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a b s t r a c t

We develop a numerical method for realizing mean curvature motion of interfaces
separatingmultiple phases,whose volumes are preserved throughout time. The foundation
of the method is a thresholding algorithm of the Bence–Merriman–Osher type. The
original algorithm is reformulated in a vector setting, which allows for a natural inclusion
of constraints, even in the multiphase case. Moreover, a new method for overcoming
the inaccuracy of thresholding methods on non-adaptive grids is designed, since this
inaccuracy becomes especially prominent in volume-preserving motions. Formal analysis
of the method and numerical tests are presented.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This work develops a method to compute the area-decreasing evolution of interfaces between an arbitrary number
of phases in arbitrary dimension under the constraint that the volume of each phase is preserved throughout time. Such
evolutions often appear in situations where interfaces move according to their geometry, while the mass of each phase
remains constant (e.g., grain boundaries in ternary alloys, crystal growth, multiphase flows or formation of soap film
bubbles). This kind of motion also has applications in image processing (denoising, segmentation), in biology (modeling
of vesicles and blood cells), in the description of isolated gravitating systems in general relativity, and other research fields.

Strictly speaking, since volume preservation is a global constraint, one cannot consider a constrained curvature flow
directly. Therefore, we have to start from a more basic aspect of the motion, such as the energy. In particular, we consider
the constrained steepest descent of the ‘‘area energy’’ of each interface, which counts the measure of interfaces weighted by
their corresponding interfacial tensions. The steepest descent of the area energy without any constraint gives the classical
mean curvature flow. On the other hand, in the case of two phases, the volume-constrained gradient flow of this energy
corresponds to evolution by mean curvature, minus a time-dependent term (equal to the average mean curvature over the
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interface). The situation is analogous formore than two phases but the nonlocal termhas a complicated formwhich depends
on the configuration of each interface.

The subject is also mathematically interesting, because it is one of the most simple problems with nontrivial limiting
behavior. It is well known that mean curvature flow shrinks uniformly convex smooth hypersurfaces smoothly to a point in
finite time. On the other hand, the volume-preserving mean curvature flow converges to the solution of the isoperimetric
problem, i.e., a sphere [1–4]. However, the volume-preserving flow may drive general embedded hypersurfaces to self-
intersections, as was shown in [5]. On the other hand, [6,7] proved that if the initial surface is sufficiently close to a sphere
then it converges to the sphere even if it is not initially convex. Due to the complexity of the multiphase case, there are only
a few results concerning the stability of junctions under area-preserving flow, see [8,9] and the references therein.

Since evolution of surfaces is an intensely studied subject of practical interest, a number of analytical and numerical
methods have been developed to treat motion bymean curvature. Many of these methods can be applied to the constrained
motion addressed here; let us summarize the known resultswith emphasis on themultiphase case and volumepreservation.

Perhaps themost basic approach is to use the definition of themotion itself. That is, in the two-phase case, one computes
the evolution of the interface directly from its velocity:

v(x) = (−κ(x) + κa)n(x), a.e. x ∈ ∂P(t),

where P(t) denotes the region occupied by one phase, κ is themean curvature and κa is the averagemean curvature over the
whole interface [10,11]. These algorithms are effective for computing the evolution of smooth surfaces without topological
changes. However, if interaction of different parts of the interface occurs, a complicated decision algorithm is necessary to
proceed with the computation, and this becomes increasingly more involved in higher dimensions. Higher dimensions and
a larger number of phases also complicate the calculation of curvatures and their averages over the interfaces.

A more general framework is provided by the level set approach which, thanks to its implicit representation of the
interface, is able to deal with topological singularities and nonsmooth data. The constrained flow can be realized in this
setting by considering the volume-constrained gradient flow of the surface energy functional written in terms of the level
set function φ,

L(φ) =


δ(φ(x, t))|∇φ(x, t)| dx,

where δ denotes the Dirac delta function. It is still necessary to calculate the curvature values, but this method can be
extended to themultiphase setting by introducing asmany level set functions as there are phases and imposing an additional
constraint so that the level sets do not overlap or create vacuums (see [12] or [13]). However, such a constraint has an
unwanted impact on the flow [14] and the phase volumes are not adequately preserved during the computations. The first
problem was solved in [14,15] by employing signed distance functions. Another multiphase modification of the level-set
method, which has some similarities to our own approach, was developed in [16], where the constraint of [12] was replaced
by a projection step. However, the impact of the projection on the dynamics of the interface was not analyzed.

Another level-set approach, different from our own, and which has received a lot of attention recently is the so-called
VIIM (Voronoi Implicit InterfaceMethod) [17]. Thismethod can be used for computing variousmultiphase physical problems
(includingmotions involving inertial forces, etc.). Although this method overcomesmany issues of the level set method, one
must still calculate interfacial curvatures and it has yet to be placed within a rigorous framework.

The volume-preserving mean curvature flow arises as a limit of the following nonlocal mass-preserving diffusion
equation [18–20]

ut = ∆u −
1
ε2

W ′(u) +
1

ε2|Ω|


Ω

W ′(u) dx,

whereW is a double-well potential and ε is a small parameter related to thewidth of the diffuse interface. It has been shown
that, under suitable conditions, the set

Pε(t) =


x; uε(x, t) ≥

1
2


approximates P(t)with errorO(ε2

| log ε|2). Based on this fact, the so-called phase fieldmethods represent interfaces by thin
layers in the solution and thus the resolution of this internal layer requires a very finemesh. On the other hand, this approach
handles topological changes without trouble and does not require explicit computation of curvatures (see also [21]).

In this paperwe use another approach, often referred to as a thresholdingmethod.We adapt the so-called BMOalgorithm
from [22] to generate multiphase volume-preserving motion. The BMO algorithm exploits the fact that short-time diffusion
of the characteristic function of a region enclosed by an interface (i.e., its convolution with the Gaussian kernel), evolves
the interface according to its mean curvature. More precisely, the characteristic function of a region is evolved for a short
time by the heat equation and then a thresholding step is carried out to obtain the new interface (given by the 1/2-level set
of the diffused function). The main advantage of this approach is that it naturally treats topological changes, produces no
intercalary regions and does not require explicit computation of curvatures. Moreover, it is numerically attractive because
of its stability and low computational complexity.
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