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a b s t r a c t

The Fast Multipole Method (FMM) provides a highly efficient computational tool for
solving constant coefficient partial differential equations (e.g. the Poisson equation) on
infinite domains. The solution to such an equation is given as the convolution between a
fundamental solution and the given data function, and the FMM is used to rapidly evaluate
the sum resulting upon discretization of the integral. This paper describes an analogous
procedure for rapidly solving elliptic difference equations on infinite lattices. In particular, a
fast summation technique for a discrete equivalent of the continuum fundamental solution
is constructed. The asymptotic complexity of the proposed method is O(Nsource), where
Nsource is the number of points subject to body loads. This is in contrast to FFT basedmethods
which solve a lattice Poisson problem at a cost O(NΩ logNΩ) independent of Nsource, where
Ω is an artificial rectangular box containing the loaded points and NΩ is the number of
lattice points in Ω .

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper describes an efficient technique for solving Poisson problems defined on the integer lattice Z2. For simplicity
of presentation, we limit our attention to the equation

[Au](m) = f (m), m ∈ Z2, (1.1)

where f = f (m) and u = u(m) are scalar valued functions on Z2, and where A is the so-called discrete Laplace operator

[A u](m) = 4u(m) − u(m + e1) − u(m − e1) − u(m + e2) − u(m − e2), m ∈ Z2. (1.2)

In (1.2), e1 = [1, 0] and e2 = [0, 1] are the canonical basis vectors in Z2. If f ∈ L1(Z2) (meaning that


m∈Z2 |f (m)| < ∞)
and


m∈Z2 f (m) = 0, Eq. (1.1) is well-posed when coupled with a suitable decay condition for u, see [1,2] for details.

We are primarily interested in the situation where the given function f (the source) is supported at a finite number of
points which we refer to as source locations, and where the function u (the potential) is sought at a finite number of points
called target locations. While the solution technique is described for Eq. (1.1) involving the specific operator (1.2), it may
readily be extended to a broad range of lattice equations involving constant coefficient elliptic difference operators. (The
method can in principle be extended to elliptic problems with oscillatory solutions, but it can realistically only be used in
situations where the support of f is contained in a domain that is not larger than a few dozen or so wavelengths. The lattice
FMM is in this regard entirely analogous to the classical FMM in that profound modifications are required to handle the
highly oscillatory case, see [3].)
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Variations of Eq. (1.1) are perhaps best known as a set of equations associated with the discretization of elliptic partial
differential equations. However, such equations also emerge in their own right as natural models in a broad range of
applications: randomwalks [4], analyzing the Ising model (in determining vibration modes of crystals), and many others in
engineering mechanics including micro-structural models, macroscopic models, simulating fractures [5,6] and as models of
periodic truss and frame structures [7,8,2,9].

Of particular interest inmany of these applications is the situationwhere the lattice involves local deviations fromperfect
periodicity due to either broken links, or lattice inclusions. The fast technique described in this paper can readily bemodified
to handle such situations, see Section 10.1. It may also be modified to handle equations defined on finite subsets of Z2, with
appropriate conditions (Dirichlet/Neumann/periodic) prescribed on the boundary, see Section 10.2 and [10].

The technique described is a descendant of the Fast Multipole Method (FMM) [11–13], and, more specifically, of ‘‘kernel
independent’’ FMMs [14–16]. A key application of the original FMMwas to rapidly solve the Poisson equation

− 1u(x) = f (x), x ∈ R2, (1.3)

which is the continuum analog of (1.1). The FMM exploits the fact that the analytic solution to (1.3) takes the form of a
convolution

u(x) =


R2

φcont(x − y) f (y) dy, (1.4)

where φcont is the fundamental solution of the Laplace operator,

φcont(x) = −
1
2π

log |x|. (1.5)

If the source function f corresponds to a number of point charges {qj}Nj=1 placed at locations {xj}Nj=1, and if the potential u is
sought at same set of locations, then the convolution (1.4) simplifies to the sum

ui =

N
j=1
j≠i

φcont(xi − xj) qj, i = 1, 2, . . . ,N. (1.6)

While direct evaluation of (1.6) requires O(N2) operations since the kernel is dense, the FMM constructs an approximation
to the potentials {ui}

N
i=1 in O(N) operations. Any requested approximation error ε can be attained, with the constant of

proportionality in the O(N) estimate depending only logarithmically on ε.
In the same way that the FMM can be said to rely on the fact that the Poisson equation (1.3) has the explicit analytic

solution (1.4), the techniques described in this paper can be said to rely on the fact that the lattice Poisson equation (1.1)
has an explicit analytic solution in the form

u(m) = [φ ∗ f ](m) =


n∈Z2

φ(m − n) f (n) (1.7)

where φ is a fundamental solution for the discrete Laplace operator (1.2). This fundamental solution is known analytically
[1,2,17,10] via the normalized Fourier integral

φ(m) =
1

(2π)2

 π

−π

 π

−π

cos(t1m1 + t2m2) − 1
4 sin2(t1/2) + 4 sin2(t2/2)

dt1 dt2, m = [m1, m2] ∈ Z2. (1.8)

This paper presents an adaptation of the original Fast Multipole Method that enables it to handle discrete kernels such
as (1.8) and to exploit accelerations that are possible due the geometric restrictions present in the lattice case. The method
extends directly to any problem that can be solved via convolution with a discrete fundamental solution. The technique for
numerically evaluating (1.8) extends directly to other kernels, see Section 3.

While we are not aware of any previously published techniques for rapidly solving the free space problem (1.1) (or,
equivalently, for evaluating (1.7)), there exist very fast solvers for the closely related case of lattice Poisson equations defined
on rectangular subsets of Z2 with periodic boundary conditions. Such equations become diagonal when transformed to
Fourier space, and may consequently be solved very rapidly via the FFT. The computational time Tfft required by such a
method satisfies

Tfft ∼ Ndomain logNdomain as Ndomain → ∞, (1.9)

where Ndomain denotes the number of lattice nodes in the smallest rectangular domain holding all source locations, and
where the constant of proportionality is very small. Similar complexity, sometimes without the logarithmic factor, and with
fewer restrictions on the boundary conditions, may also be achieved via multigrid methods [18].

The principal contribution of the present work is that the computational time TFMM required by the method described
here has asymptotic complexity

TFMM ∼ Nsources, as Nsources → ∞, (1.10)
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