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a b s t r a c t

Proper orthogonal decomposition (POD) is frequently applied to estimate parameters of
partial differential equations. This study examines the application of the POD method in
estimating the parameters of an Ordinary Differential Equation (ODE) model of stable
oscillating biological networks. The mathematical model used to simulate molecular
interactions in these oscillating networks is related to theGause–Lotka–Volterra equations.
The findings reveal that POD generates accurate estimates of the parameters even in
the presence of experimental noise; furthermore, extrapolating biologically measured
data points to a number of oscillations improves the curve fits, C1 approximations, and
parameter estimations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Proper Orthogonal Decompositionmethodwas initially presented by Kari Karhunen andMichel Loéve independently
of one another in the 1940s, and therefore, it is also known as the Karhunen–Loéve Expansion (KLE), [1]. Lawrence Sirovich
later developed the method of ‘‘snapshots’’, or observations, to the KLE, which reduces the number of eigenvectors by
excluding eigenvectorswith eigenvalues less than a certain value [2–4]. The use of POD inmathematicalmodeling has found
applications in several disciplines of study, including signal analysis, pattern recognition, control theory, fluid dynamics,
and more recently cardiac electrophysiology [1,5–11]. The goal of the POD method is to produce a reduced-order model of
a system, which can then be used to solve an inverse problem, like parameter estimation in a set of differential equations.
It is most commonly used to estimate parameters in a system of partial differential equations; while several authors have
applied the PODmethod in parameter estimation problems [5,8,10,11], to our knowledge, none have applied the technique
in estimating parameters for stable oscillating biological networks.
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In nature, many biological systems have periodic tendencies. Some examples in the human body are neural activity
in the central nervous system, hormone levels within the menstrual cycle, and the proteins and genes regulating the
circadian clock. Mathematical models are important because they allow scientists and researchers to better understand
the properties of each molecular network, such as the effects of small perturbations or mutations on the stability of the
oscillating system [12].

Ordinary Differential Equations (ODEs) are often used to model these oscillating biological networks, yet they require
parameter values that accurately reflect specific molecular interactions in the network-namely, the magnitude of each
species’ activation or suppression rate on another species. One advantage of working with stable oscillating networks is
that if a certain number of molecular concentrations are known in a single oscillation from biological assays, these values
can be extrapolated to any number of time-points in subsequent oscillations given the periodic tendency of the system. Then,
havingmolecular concentrations from an optimal number of oscillations, one is facedwith an inverse problem of estimating
the parameters of an ODE model of the system. This parameter discovery can be computationally intense, especially in
networks involving a large number of interacting elements. Hence, we hypothesize that we can apply the POD method to
describe the interaction of elements in a stable oscillating network.

Until recently, the most common approach to parameter estimation for non-linear systems has been through non-linear
least-squares fitting [13]. However, the POD method presents many advantages over the least-squares approach. First, the
POD method produces a reduced order model that is a linear combination of an optimal set of basis elements, computed
specifically to capture the main characteristics of the system [5]. In fact, our specific investigation will show that the POD
method more accurately models the known biological data than other data-fitting methods, such as splines. Finally, as will
be explained in subsequent sections, the method is less computationally intense because it takes an optimally large set of
parameter values and then narrows the set to a few estimates to be tested.

The paper is organized as follows. After a brief overview of the types of differential equations used to model oscillating
biological networks in Section 2, we present a specific stable oscillating network and its corresponding set of Ordinary
Differential Equations in Section 3. Here also, we outline the nature of the inverse problem, which is to use the reduced-
order POD model to estimate the unknown parameters in the system. In Section 4, we present the main theory behind the
POD method as well as a step-by-step guide to its application in first modeling a stable oscillating system and then solving
for the system’s parameters. Finally, in Section 5, we apply this guide to a specific optimization problem, where we solve for
two of the parameters in the proposed system from Section 3. In particular, we investigate the optimal number of parameter
values needed to compute the POD basis elements, andwe also optimize the number of oscillations to whichwe extrapolate
our known set of experimental data points. Section 6 details our results, followed by a conclusion in Section 7.

2. System of ordinary differential equations

Assuming that genes/proteins j ∈ {1, . . . , n} regulate the production of gene/protein i, we use the following type of
differential equations as a general model:

dxi(t)
dt

= ui(t)xi(t)(si − xi(t)), 1 ≤ i ≤ n, (1)

ui = Bi +

n
j=1

λj,ixj(t), Bi ≥ 0

where xi is the state vector representing the concentration of molecule i at its site of action. The initial conditions are taken
such that xi(t) ∈ [0, si], where si is the saturation level of molecule i. The real parameters λj,i are regulatory weights that
encode the effects of molecule j on the production rate of molecule i. The sign of λj,i indicates the effect of j on i, where
positive and negative signs denote activation and suppression, respectively. The magnitude of λj,i reflects the strength of
stimulation or repression. The model incorporates a logistic term [(xi)(si − xi)]. Note that the term λi,i describes the sum of
actions of a molecule on itself, which could reflect degradation and possible self activation. The term Bi ≥ 0 is a constant
term representing basal synthesis. The term ui(t), which controls the sign of the derivative dxi(t)

dt , reflects the linear sum of
the regulatory forces acting on molecule i. Note that when ui(t) > 0, the sum of the negative regulatory influences (NRI)
(degradation and repression) is less than the sum of the positive regulatory influences (PRI) (activation). Likewise, ui(t) < 0
when the sum of PRI is less than the sum of NRI. Notice that ẋi = 0 implies that ui(t) = 0 (NRI = PRI) since the logistic term
ensures that xi(t) is never identically zero or at full saturation si for any finite time (as long as the initial concentration of xi
is not identically zero or si, although it can be arbitrarily close).

The overall structure of Eq. (1) is similar to that of a logistic equation, dx(t)
dt = rx(t)(s − x(t)), where r is the growth

or decline rate of population x, and s is the carrying capacity, or saturation level. Observe that the logistic term generates
s-shaped curves that mimic biological data. However, in Eq. (1), the constant rate r has been replaced by a varying rate of
change, ui(t), which is dependent on the summation of a molecule’s regulatory signals at a given time t . At any given time,
the population (or concentration of a molecular species) is growing or decaying at a rate ui(t), which fluctuates between the
maximal and the minimum rates of formation of i. Thus, the closer ui(t) is to the maximal (minimal) rate of formation, the
faster the molecule i will approach its saturation level si (zero).
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