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a b s t r a c t

Discretizing systems of nonlinear algebraic differential equations yields polynomial sys-
tems. When using a fine discretization, the resulting polynomial system is often too large
to solve using a direct solving approach. Our approach for solving such systems is to utilize
a homotopy continuation based method arising from domain decomposition. This method
solves polynomial systems arising from subdomains and then uses homotopy continuation
to build solutions of the original polynomial system. We illustrate this approach on both
one- and two-dimensional problems.

Published by Elsevier B.V.

1. Introduction

A common approach for approximating solutions to a system of nonlinear differential equations is to discretize and
solve the resulting nonlinear system of equations. When the nonlinear equations are algebraic, the resulting system is a
system of polynomials. Even though modern numerical codes for computing all solutions of a polynomial system can yield
new solutions (see, e.g., [1]), the systems of polynomials (arising even from very sparse grids) are usually much too large
for direct solution by these codes. The realization underlying this article is that domain decomposition gives guidance on
how to ‘‘bootstrap’’ from the solutions of many small polynomial systems to often many solutions of a polynomial system
arising from a fine discretization based on a realistic grid. Coefficient-parameter homotopies [2] are used to form solutions
for the fine discretization from various solutions of the subsystems. In summary, we focus on computing solutions to the
polynomial system resulting from a realistic discretization. However, since the development of a realistic discretization
varies from system to system, for example, to encapsulate various properties of the differential system in the discretization,
we do not discuss how one would obtain this for their particular system of differential equations. Some examples in the
context of solving using homotopy approaches are a floating grid scheme for free-boundary problems [3–7] and a WENO
scheme from hyperbolic conservation laws [8].
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The technique described in [9] builds solutions as follows. First, one solves a very coarse initial grid which one can con-
sider arising from a finite-difference scheme or some other related method. After spurious solutions are filtered out, the
mesh is refined in a smooth way. The resulting solutions are used as the starting points for a homotopy moving to a finer
discretization. This process can be repeated until the set of real solutions has stabilized. If one now seeks more accurate
solutions, the available solutions can be extrapolated to finer meshes and used as starting points for another homotopy,
which is now over the real numbers.

Domain decomposition is a powerful tool for devising parallel methods to solve partial differential equations. The basic
idea of domain decomposition is to first decompose the domain into subdomains. Then, each subdomain is solved indepen-
dently in parallel. The solutions from the subdomains are then merged together to form solutions of the original problem.
One issuewith this approach is computing approximate values to the subdomain boundary points. Since this is amajor diffi-
culty, there is a rich literature (see, for example, [10–13] and the references therein) of schemes for approximating them us-
ing a time-dependent systemof partial differential equations (PDEs), typically for systems of parabolic differential equations.

In this article, we introduce a new homotopy method based on domain decomposition which we call the bootstrapping
method. This method computes multiple solutions to discretized systems of nonlinear algebraic differential equations and
is naturally parallelizable. This method is more efficient than the traditional homotopy method for computing large-scale
systems. We introduce this bootstrapping method for solving problems consisting of one and two space dimensions in
Sections 2 and 4, respectively. Sections 3 and 5 examine the algorithm and provide numerical examples. A summary of the
results is presented in Section 6.

2. One-dimensional bootstrapping

The fundamental idea of domain decomposition and the bootstrapping approach is that the polynomial systems resulting
from discretizing on the whole domain and each subdomain are structurally the same and only differ in the values of
parameters. In short, this means that coefficient-parameter continuation can be repeatedly used to solve such systems.
To demonstrate this in the one-dimensional case, we will consider Laplace’s equation. Suppose that u : [0, 1] → R solvesuxx = f (u) on (0, 1),

u(0) = c0,
u(1) = c1,

(2.1)

where f (u) is a polynomial function of u, and c0, c1 ∈ R. When f (u) = up, this equation is the steady-state equation for
thermal runaway. Consider discretizing the system using N + 1 grid points located at xi = i/N for i = 0, . . . ,N with a
second-order central difference scheme to approximate uxx. The resulting polynomial system is

FH(u0, . . . , uN) =

f (ui) − H−2(ui+1 − 2ui + ui−1), 1 ≤ i ≤ N − 1
u0 − c0
uN − c1

 , (2.2)

where H = 1/N , and ui is considered to be an approximation of u(xi). If we are given that u(xi) = di and u(xi+1) = di+1,
consider discretizing each subinterval [xi, xi+1] usingM +1 grid points located at xi,j = xi + j/(NM) for j = 0, . . . ,M with a
second-order central difference scheme to approximate uxx. The resulting polynomial systems is obtained from FH by simply
modifying the parameters H , c0, and c1; namely,

Gi,h(ui,0, . . . , ui,M) =

f (ui,j) − h−2(ui,j+1 − 2ui,j + ui,j−1), 1 ≤ j ≤ M − 1
ui,0 − di

ui,M − di+1

 , (2.3)

where h = (NM)−1, and ui,j approximates u(xi,j). The numbers di and di+1 are called the boundary values of the subsystem
Gi,h = 0. As mentioned above, obtaining the values of di and di+1 is a major difficulty.

The goal of the bootstrapping approach is to compute solutions of FH ′ = 0 for a sufficiently small value of H ′, i.e., a fine
discretization using a large number of grid points, by solving FH = 0 for large values of H , i.e., a coarse discretization using
a small number of grid points, and building from solutions to the subsystems Gi,h = 0 using appropriately selected h and
boundary values di and di+1.

We will use the values obtained from solving FH = 0 as the boundary values of the subsystems. That is, the domain
decomposition system under consideration is

Fh,H(u) =

 f (ui,j) − h−2(ui,j+1 − 2ui,j + ui,j−1), 0 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1
f (ui,0) − H−2(ui+1,0 − 2ui,0 + ui−1,0), 1 ≤ i ≤ N − 1

u0,0 − c0
uN,0 − c1

 , (2.4)

where H = N−1, h = (NM)−1, ui,M = ui+1,0, and

u =

u0,0, . . . , u0,M−1, . . . , uN−1,0, . . . , uN−1,M−1, uN,0


.
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