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a b s t r a c t

A representation for the entries of the inverse of general tridiagonal matrices is based
on the determinants of their principal submatrices. It enables us to introduce, through
the linear recurrence relations satisfied by such determinants, a simple algorithm for the
entries of the inverse of any tridiagonal nonsingular matrix, reduced as well as unreduced.
The numerical approach is preserved here, without invoking the symbolic computation.
For tridiagonal diagonally dominant matrices, a scaling transformation on the recurrences
allows us to give another algorithm to avoid overflow and underflow.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let T = {ai, bi, ci} (1 ≤ i ≤ n) be an n × n tridiagonal nonsingular matrix, with a1 = cn = 0, where the {bi} are the
coefficients of theprincipal diagonal and the {ai}, {ci} are those of the lower andupper subdiagonals, respectively. Algorithms
for the inversion of such matrices are frequently used. There are efficient packages for the numerical inversion of matrices
based on Gaussian algorithms, with pivoting strategies, and for solving linear systems by using the Neville elimination,
see e.g. [1]. But they require a great amount of memory and greater run times than other specific algorithms. Concerning
the abundant literature about such simpler algorithms for the inversion of tridiagonal matrices, we can refer to [2–4],
for example. In general, these specialized algorithms are applicable only in the case of tridiagonal unreduced matrices.
Frequently, reduced matrices have been avoided because if an entry on the subdiagonals is null, then the routine can be
applied in separate blocks. Indeed, just consider a scenario of tridiagonal strongly reduced matrices, which have numerous
null entries in the subdiagonals. Therefore, complexity of such a method of inversion becomes significant. Numerical
techniques have also been applied on linear systems with block tridiagonal matrices, see e.g. [5,6].

A first complete analysis on the inversion of tridiagonal nonsingular matrices, without imposing any condition on the
coefficients, was introduced in [7]. Nevertheless, the resulting numerical algorithm breaks down when any (left or right)
principal submatrix is singular. The symbolic computation recently established in this subject, see e.g. [8,9], overcomes
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difficulties by considering symbolic parameters, which are adequately replaced in a posterior step of the algorithm. The
computational complexity of the algorithms given in [7–9] is O(n2).

In the applied domain, the numerical approach is currently more spread out and usable than the symbolic one. Thus
we try to go on with the numerical line from [7], by introducing a simple algorithm to obtain the entries of the inverse of
any tridiagonal nonsingular matrix. There are some compact representations for the entries of the inverse of tridiagonal
nonsingular matrices, special as well as general, see e.g. [10,11]. We propose a numerical algorithm by taking advantage of
the representation based on the determinants of proper principal submatrices, see e.g. [9],
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The submatrix Ti−1 is the left principal one of order i − 1. The submatrix T (j)
n−j is the right principal one of order n − j, which

begins in the (j + 1)-th row and column and finishes in the n-th row and column. We define here det T0 = det T (n)
0 = 1.

Representation (1) for the entries of the inverse of tridiagonal nonsingular matrices is a particular case of the closed
representation for inverses of nonsingular Hessenberg matrices, see e.g. [12]. We can also obtain Expression (1) by using
the companion decomposition, recently introduced in [13], on any tridiagonal nonsingular matrix T .

If in addition T is a symmetric matrix, then its inverse matrix is also a symmetric one, and its entries have the simpler
representation,

(T−1)ij = (T−1)ji = (−1)M+m
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withM = max{i, j},m = min{i, j}.
The complexity for the inversion of tridiagonal nonsingular matrices is related to the obtainment of the determinants

of all their principal submatrices. For a fast computation we have at our disposal the second order linear difference
equations satisfied by such determinants; see also [14]. The linear recurrence relation for determinants of the left principal
submatrices, with initial conditions det T1 = b1, det T2 = b2b1 − a2c1, is

det Tk+2 = bk+2 det Tk+1 − ak+2ck+1 det Tk, (1 ≤ k ≤ n − 2) . (3)

For determinants of the right principal submatrices, the recurrence relation for 1 ≤ k ≤ n − 2, with initial conditions
det T (n−1)

1 = bn, det T
(n−2)
2 = bn−1bn − cn−1an, is

det T (n−k−2)
k+2 = bn−k−1 det T

(n−k−1)
k+1 − cn−k−1an−k det T

(n−k)
k . (4)

Just consider as we can directly obtain a particular entry of the inverse with O(n) complexity. Although, overflow or
underflow can appear in further computation of such recurrences. Thus, our algorithm works for values of the recurrences
into the usage range. For example, in somediagonally dominantmatrices, i.e. |bi| ≥ |ai|+|ci|, the solutions of the recurrences
grow (or reduce) quickly in magnitude. Therefore other methods should be introduced, such as scaling transformations on
the recurrences. We handle these difficulties by considering another algorithm.

The material of this paper is organized as follows. In Section 2, after analyzing difficulties of some current specialized
numerical algorithms for the inversion of tridiagonal matrices, [7,9], we point out the features of the algorithm detailed in
Appendix A. This algorithm permits us to compute the inverse of any tridiagonal nonsingular matrix of finite order. As an
illustration, graphical comparisons of its run times with respect to the built-in function inv() of the Matlab R⃝ package are
given in Fig. 1. In Section 2.2 we check the algorithm of Appendix A on some current examples of tridiagonal matrices. As it
was pointed out previously, somedifficulties related to overflowandunderflowappear in the inversion of various tridiagonal
diagonally dominant matrices. We manage these difficulties by introducing in Section 2.3 scaling transformations in the
linear recurrences involved. Therefore, an equivalent recursive algorithm is detailed in Appendix B. It permits us to avoid
overflow and underflow. To check the complexity of the proposed algorithm from Appendix B with respect to those given
in [7,9], a graphical comparison for the mean elapsed time in the inversion of some diagonally dominant matrices is finally
provided.

2. Inversion of general tridiagonal matrices

2.1. Algorithms of inversion in the general case

An advance on specialized numerical algorithms for the inversion of general tridiagonal matrices was provided in [7],
beyond the classical method using four vectors on unreducedmatrices; see e.g. [9, Section 4.1]. This algorithm permits us to
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