ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

A fully discrete C^0 interior penalty Galerkin approximation of the extended Fisher–Kolmogorov equation

Thirupathi Gudi*, Hari Shanker Gupta

Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India

ARTICLE INFO

Article history:
Received 11 August 2011
Received in revised form 1 October 2012

MSC: 65N30 65N15

Keywords:
Finite element
Discontinuous Galerkin
Error estimate
Regularity
Stability
EFK equation

ABSTRACT

A fully discrete C^0 interior penalty finite element method is proposed and analyzed for the Extended Fisher–Kolmogorov (EFK) equation $u_t + \gamma \Delta^2 u - \Delta u + u^3 - u = 0$ with appropriate initial and boundary conditions, where γ is a positive constant. We derive a regularity estimate for the solution u of the EFK equation that is explicit in γ and as a consequence we derive a priori error estimates that are robust in γ .

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We study a fully discrete C^0 interior penalty method for the fourth order parabolic Extended Fisher-Kolmogorov (EFK) equation:

$$\frac{\partial u}{\partial t} + \gamma \Delta^2 u - \Delta u + \phi(u) = 0 \quad \text{in } \Omega \times (0, T], \tag{1.1}$$

$$\frac{\partial u}{\partial n} = \gamma \frac{\partial \Delta u}{\partial n} = 0 \quad \text{on } \partial \Omega \times (0, T], \tag{1.2}$$

$$u(x,0) = u_0(x), \quad x \in \Omega \tag{1.3}$$

where $\Omega \in \mathbb{R}^d$ (d=1,2,3) is a bounded domain with convex polyhedral boundary $\partial \Omega$, T>0, γ is a positive constant, u_0 is a given function of $x \in \mathbb{R}^d$ and $\phi(u) = u^3 - u$. The nonlinear function $\phi(u) = \Psi'(u)$ for $\Psi(u) = \frac{1}{4}(u^2-1)^2$. Specific assumptions on the initial data u_0 will be given later in the course of the paper. Here and throughout, Δ denotes the Laplacian. When $\gamma=0$ in (1.1), we obtain the Fisher–Kolmogorov equation that occurs in the study of front propagation [1,2] into unstable states. The model problem (1.1)–(1.3) is proposed in [3,4] as an extension of the Fisher–Kolmogorov equation for the study of spatial patterns in bistable systems. When γ is small ($\gamma \leq 1/8$), it is observed in [4,5] that the solutions of EFK equations are similar to the FK equation but lead to smooth fronts. However when $\gamma > 1/8$, it is possible to distinguish the solutions of these equations [5]. The study of the dynamics of the EFK equation can be found in [6,5,7].

E-mail addresses: gudi@math.iisc.ernet.in (T. Gudi), hari@math.iisc.ernet.in (H.S. Gupta).

^{*} Corresponding author.

From the numerical point of view, a conforming finite element method has been proposed in [8] for the EFK equation (1.1) and the error analysis has been discussed. In this article, we propose and study the C^0 interior penalty method for (1.1). In the past few years, C^0 interior penalty methods [9,10] have became an attractive alternative for fourth order problems since the design of quasi-optimal C^0 interior penalty methods is straightforward [11,12]. During the past few years, fully discontinuous Galerkin methods have also became attractive for fourth order problems [13–17] although they involve a larger number of degrees of freedom than the C^0 interior penalty method. C^0 interior penalty methods are designed based on a standard Lagrange finite element space and a mesh dependent weak formulation involving jumps of the normal derivative across the inter-element boundaries. Since the standard Lagrange finite element spaces are designed for second order problems, they are naturally suitable for singularly perturbed fourth order problems. In [18], a C^0 interior penalty method is analyzed for a singularly perturbed fourth order elliptic problem and proved to be robust with respect to the small perturbation parameter. In this article, we extend the results in [18] to study a fully discrete C^0 interior penalty method for the EFK equation (1.1) involving a singularly perturbed fourth order term (when γ is small). We establish the stability of the numerical solution and derive a priori error estimates which are robust in γ (depend on a lower order polynomial in γ and derive stability bounds for an elliptic projection of u.

The rest of the article is organized as follows. In Section 2, we derive *a priori* bounds for the solution of the EFK equation. Therein, we propose our numerical method and prove the existence and uniqueness of a discrete solution. Moreover, we derive stability estimates for both the weak and the discrete solution. In Section 3, we derive some regularity of the weak solution. In Section 4, *a priori* error estimates that are robust in γ are derived. Finally, we present conclusions in Section 5.

2. Existence and uniqueness results

In this section, we present a fully discrete C^0 interior penalty method and show the existence and uniqueness of the discrete solution. We derive some *a priori* bounds for the solution of the EFK equation and its discrete counterpart.

Let $V = \{v \in H^2(\Omega) : \partial v / \partial n = 0 \text{ on } \partial \Omega\}$. Denote the $L_2(\Omega)$ inner-product by (\cdot, \cdot) and the norm by $\|\cdot\|$.

The weak form of (1.1)–(1.3) is to find $u(\cdot, t) \in V$, $t \in [0, T]$ such that

$$(u_t, v) + \gamma(\Delta u, \Delta v) + (\nabla u, \nabla v) + (\phi(u), v) = 0, \quad \forall v \in V,$$

$$(2.1)$$

$$u = u_0$$
 at $t = 0$. (2.2)

The following lemma on the norm equivalence is useful in our analysis.

Lemma 2.1. There exist two positive constants C_1 and C_2 which may depend on Ω such that

$$C_1 \|v\|_{H^2(\Omega)} \le \left(\|\Delta v\|^2 + \|v\|_{H^1(\Omega)}^2 \right)^{1/2} \le C_2 \|v\|_{H^2(\Omega)}, \quad \forall v \in V.$$
 (2.3)

Proof. Let $v \in V$. Then it is obvious that $\left(\|\Delta v\|^2 + \|v\|_{H^1(\Omega)}^2 \right)^{1/2} \le C_2 \|v\|_{H^2(\Omega)}$.

To prove the other way, note that $v \in V$ satisfies the following elliptic problem:

$$-\Delta v = -\Delta v \quad \text{in } \Omega,$$
$$\frac{\partial v}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

Appealing to the elliptic regularity theory for the second order homogeneous Neumann problem on convex polyhedral domains [19,20], there exists some positive constant C depending on Ω such that

$$\|\dot{v}\|_{H^{2}(\Omega)/R} \le C \left(\|\Delta v\| + \|\partial v/\partial n\|_{H^{1/2}(\partial\Omega)} \right) = C \|\Delta v\|, \tag{2.4}$$

where \dot{v} denotes the equivalence class of v in the quotient space $H^2(\Omega)/R$ equipped with the norm

$$\|\dot{v}\|_{H^{2}(\Omega)/R} = \inf_{c \in R} \|v + c\|_{H^{2}(\Omega)} = \inf_{c \in R} \left(\|v + c\|_{L_{2}(\Omega)}^{2} + \|\nabla v\|_{L_{2}(\Omega)}^{2} + |v|_{H^{2}(\Omega)}^{2} \right)^{1/2}. \tag{2.5}$$

From (2.4) and (2.5), we find

$$|v|_{H^2(\Omega)} \leq C \|\Delta v\|.$$

This completes the proof. \Box

We derive some *a priori* bounds for *u* which are explicit in terms of the parameter γ . Throughout the article, *C* and *C*(*T*) denote generic positive constants which are independent of the constant γ .

Download English Version:

https://daneshyari.com/en/article/4639270

Download Persian Version:

https://daneshyari.com/article/4639270

<u>Daneshyari.com</u>