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1. Introduction

We study a fully discrete C° interior penalty method for the fourth order parabolic Extended Fisher-Kolmogorov (EFK)
equation:
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u(x,0) =up(x), x€ (1.3)

where 2 € R? (d = 1, 2, 3) is a bounded domain with convex polyhedral boundary 352, T > 0, y is a positive constant,
U is a given function of x € R? and ¢ (u) = u® — u. The nonlinear function ¢ (u) = ¥’ (u) for ¥ (u) = %(u2 — 1)2. Specific
assumptions on the initial data ug will be given later in the course of the paper. Here and throughout, A denotes the Laplacian.
When y = 0in (1.1), we obtain the Fisher-Kolmogorov equation that occurs in the study of front propagation [1,2] into
unstable states. The model problem (1.1)-(1.3) is proposed in [3,4] as an extension of the Fisher-Kolmogorov equation for
the study of spatial patterns in bistable systems. When y is small (y < 1/8), it is observed in [4,5] that the solutions of EFK
equations are similar to the FK equation but lead to smooth fronts. However when y > 1/8, it is possible to distinguish the
solutions of these equations [5]. The study of the dynamics of the EFK equation can be found in [6,5,7].
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From the numerical point of view, a conforming finite element method has been proposed in [8] for the EFK equation
(1.1) and the error analysis has been discussed. In this article, we propose and study the C° interior penalty method for
(1.1). In the past few years, C° interior penalty methods [9,10] have became an attractive alternative for fourth order
problems since the design of quasi-optimal C° interior penalty methods is straightforward [11,12]. During the past few
years, fully discontinuous Galerkin methods have also became attractive for fourth order problems [13-17] although they
involve a larger number of degrees of freedom than the C° interior penalty method. C° interior penalty methods are designed
based on a standard Lagrange finite element space and a mesh dependent weak formulation involving jumps of the normal
derivative across the inter-element boundaries. Since the standard Lagrange finite element spaces are designed for second
order problems, they are naturally suitable for singularly perturbed fourth order problems. In [18], a C° interior penalty
method is analyzed for a singularly perturbed fourth order elliptic problem and proved to be robust with respect to the small
perturbation parameter. In this article, we extend the results in [18] to study a fully discrete C° interior penalty method for
the EFK equation (1.1) involving a singularly perturbed fourth order term (when y is small). We establish the stability of the
numerical solution and derive a priori error estimates which are robust in y (depend on a lower order polynomial in y ~1). To
accomplish this, we establish a regularity estimate for the solution u of (1.1) that is explicit in y and derive stability bounds
for an elliptic projection of u.

The rest of the article is organized as follows. In Section 2, we derive a priori bounds for the solution of the EFK equation.
Therein, we propose our numerical method and prove the existence and uniqueness of a discrete solution. Moreover, we
derive stability estimates for both the weak and the discrete solution. In Section 3, we derive some regularity of the weak
solution. In Section 4, a priori error estimates that are robust in y are derived. Finally, we present conclusions in Section 5.

2. Existence and uniqueness results

In this section, we present a fully discrete C° interior penalty method and show the existence and uniqueness of the
discrete solution. We derive some a priori bounds for the solution of the EFK equation and its discrete counterpart.

Let V = {v € H?(£2) : 9v/dn = 0on d£2}. Denote the L,(£2) inner-product by (-, -) and the norm by || - ||.

The weak form of (1.1)—(1.3) is to find u(-, t) € V, t € [0, T] such that

(u¢, v) + y(Au, Av) + (Vu, Vo) + (¢(u),v) =0, Yv eV, (2.1)
u=uy att=020. (2.2)

The following lemma on the norm equivalence is useful in our analysis.

Lemma 2.1. There exist two positive constants C; and C, which may depend on §2 such that

1/2
Cillvllieiey = (18017 + 10121 g)) = Gollvliay, Vv eV, 23)

12
Proof. Let v € V. Then it is obvious that (||Av||2 + ||v||12{1(9)) < Gllvllpzg)-

To prove the other way, note that v € V satisfies the following elliptic problem:
—Av=—Av in$2,
v

— =0 onads2.
on

Appealing to the elliptic regularity theory for the second order homogeneous Neumann problem on convex polyhedral
domains [19,20], there exists some positive constant C depending on §2 such that

I0ll22)/r < € (I1AVI+ 18v/0nll412(52)) = CllAVI, (2.4)

where v denotes the equivalence class of v in the quotient space H?(£2) /R equipped with the norm

Iz = I 1+ ey = inf (10l gy + IV0lE )+ 10ngy) - 25)
From (2.4) and (2.5), we find

[Vlp22) < CllAY].
This completes the proof. O

We derive some a priori bounds for u which are explicit in terms of the parameter y. Throughout the article, C and C(T)
denote generic positive constants which are independent of the constant y.
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