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a b s t r a c t

A fully discrete C0 interior penalty finite element method is proposed and analyzed for
the Extended Fisher–Kolmogorov (EFK) equation ut + γ∆2u − ∆u + u3

− u = 0 with
appropriate initial and boundary conditions, where γ is a positive constant. We derive
a regularity estimate for the solution u of the EFK equation that is explicit in γ and as a
consequence we derive a priori error estimates that are robust in γ .

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We study a fully discrete C0 interior penalty method for the fourth order parabolic Extended Fisher–Kolmogorov (EFK)
equation:

∂u
∂t

+ γ∆2u − 1u + φ(u) = 0 in Ω × (0, T ], (1.1)

∂u
∂n

= γ
∂1u
∂n

= 0 on ∂Ω × (0, T ], (1.2)

u(x, 0) = u0(x), x ∈ Ω (1.3)

where Ω ∈ Rd (d = 1, 2, 3) is a bounded domain with convex polyhedral boundary ∂Ω, T > 0, γ is a positive constant,
u0 is a given function of x ∈ Rd and φ(u) = u3

− u. The nonlinear function φ(u) = Ψ ′(u) for Ψ (u) =
1
4 (u

2
− 1)2. Specific

assumptions on the initial datau0 will be given later in the course of the paper. Here and throughout,∆denotes the Laplacian.
When γ = 0 in (1.1), we obtain the Fisher–Kolmogorov equation that occurs in the study of front propagation [1,2] into
unstable states. The model problem (1.1)–(1.3) is proposed in [3,4] as an extension of the Fisher–Kolmogorov equation for
the study of spatial patterns in bistable systems. When γ is small (γ ≤ 1/8), it is observed in [4,5] that the solutions of EFK
equations are similar to the FK equation but lead to smooth fronts. However when γ > 1/8, it is possible to distinguish the
solutions of these equations [5]. The study of the dynamics of the EFK equation can be found in [6,5,7].
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From the numerical point of view, a conforming finite element method has been proposed in [8] for the EFK equation
(1.1) and the error analysis has been discussed. In this article, we propose and study the C0 interior penalty method for
(1.1). In the past few years, C0 interior penalty methods [9,10] have became an attractive alternative for fourth order
problems since the design of quasi-optimal C0 interior penalty methods is straightforward [11,12]. During the past few
years, fully discontinuous Galerkin methods have also became attractive for fourth order problems [13–17] although they
involve a larger number of degrees of freedom than the C0 interior penaltymethod. C0 interior penaltymethods are designed
based on a standard Lagrange finite element space and a mesh dependent weak formulation involving jumps of the normal
derivative across the inter-element boundaries. Since the standard Lagrange finite element spaces are designed for second
order problems, they are naturally suitable for singularly perturbed fourth order problems. In [18], a C0 interior penalty
method is analyzed for a singularly perturbed fourth order elliptic problem and proved to be robustwith respect to the small
perturbation parameter. In this article, we extend the results in [18] to study a fully discrete C0 interior penalty method for
the EFK equation (1.1) involving a singularly perturbed fourth order term (when γ is small). We establish the stability of the
numerical solution and derive a priori error estimateswhich are robust in γ (depend on a lower order polynomial in γ −1). To
accomplish this, we establish a regularity estimate for the solution u of (1.1) that is explicit in γ and derive stability bounds
for an elliptic projection of u.

The rest of the article is organized as follows. In Section 2, we derive a priori bounds for the solution of the EFK equation.
Therein, we propose our numerical method and prove the existence and uniqueness of a discrete solution. Moreover, we
derive stability estimates for both the weak and the discrete solution. In Section 3, we derive some regularity of the weak
solution. In Section 4, a priori error estimates that are robust in γ are derived. Finally, we present conclusions in Section 5.

2. Existence and uniqueness results

In this section, we present a fully discrete C0 interior penalty method and show the existence and uniqueness of the
discrete solution. We derive some a priori bounds for the solution of the EFK equation and its discrete counterpart.

Let V = {v ∈ H2(Ω) : ∂v/∂n = 0 on ∂Ω}. Denote the L2(Ω) inner-product by (·, ·) and the norm by ∥ · ∥.
The weak form of (1.1)–(1.3) is to find u(·, t) ∈ V , t ∈ [0, T ] such that

(ut , v) + γ (1u, 1v) + (∇u, ∇v) + (φ(u), v) = 0, ∀v ∈ V , (2.1)
u = u0 at t = 0. (2.2)

The following lemma on the norm equivalence is useful in our analysis.

Lemma 2.1. There exist two positive constants C1 and C2 which may depend on Ω such that

C1∥v∥H2(Ω) ≤


∥1v∥

2
+ ∥v∥

2
H1(Ω)

1/2
≤ C2∥v∥H2(Ω), ∀v ∈ V . (2.3)

Proof. Let v ∈ V . Then it is obvious that

∥1v∥

2
+ ∥v∥

2
H1(Ω)

1/2
≤ C2∥v∥H2(Ω).

To prove the other way, note that v ∈ V satisfies the following elliptic problem:

−1v = −1v in Ω,

∂v

∂n
= 0 on ∂Ω.

Appealing to the elliptic regularity theory for the second order homogeneous Neumann problem on convex polyhedral
domains [19,20], there exists some positive constant C depending on Ω such that

∥v̇∥H2(Ω)/R ≤ C

∥1v∥ + ∥∂v/∂n∥H1/2(∂Ω)


= C∥1v∥, (2.4)

where v̇ denotes the equivalence class of v in the quotient space H2(Ω)/R equipped with the norm

∥v̇∥H2(Ω)/R = inf
c∈R

∥v + c∥H2(Ω) = inf
c∈R


∥v + c∥2

L2(Ω) + ∥∇v∥
2
L2(Ω) + |v|

2
H2(Ω)

1/2
. (2.5)

From (2.4) and (2.5), we find

|v|H2(Ω) ≤ C∥1v∥.

This completes the proof. �

We derive some a priori bounds for uwhich are explicit in terms of the parameter γ . Throughout the article, C and C(T )
denote generic positive constants which are independent of the constant γ .
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