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a b s t r a c t

We use a method based on the division algorithm to determine all the values of the real
parameters b and c for which the hypergeometric polynomials 2F1(−n, b; c; z) have n
real, simple zeros. Furthermore, we use the quasi-orthogonality of Jacobi polynomials to
determine the intervals on the real line where the zeros are located.
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1. Introduction

The 2F1 hypergeometric function is defined by (cf. [1])

2F1 (a, b; c; z) = 1 +

∞
k=1

(a)k(b)k
(c)k

zk

k!
, |z| < 1,

where a, b and c are complex parameters, −c ∉ N0 = {0, 1, 2, . . .} and

(α)k =


α(α + 1) · · · (α + k − 1), k ∈ N,
1, k = 0, α ≠ 0

is Pochhammer’s symbol. This series converges when |z| < 1 and also when z = 1 provided that Re(c − a − b) > 0 and
when z = −1 provided that Re(c−a−b+1) > 0.When one of the numerator parameters is equal to a nonpositive integer,
say a = −n, n ∈ N0, the series terminates and the function is a polynomial of degree n in z.

The problem of describing the zeros of the polynomials 2F1 (−n, b; c; z) when b and c are complex arbitrary parameters,
has not been solved. Even when b and c are both real, the only cases that have been fully analysed impose additional
restrictions on b and c. Recent publications (cf. [2–7]) considered the zero location of special classes of 2F1 (−n, b; c; z)
with restrictions on the parameters b and c . Results on the asymptotic zero distribution of certain classes of 2F1 (−n, b; c; z)
have also appeared (cf. [8–12]).

Different types of 2F1 (−n, b; c; z) have well-established connections with classical orthogonal polynomials, notably the
Jacobi polynomials and the Gegenbauer or ultraspherical polynomials (cf. [1]). For the ranges of the parameters where these
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Fig. 1. Values of b and c for which 2F1(−n, b; c; z) is orthogonal and has n real simple zeros in the intervals (0, 1), (−∞, 0) and (1, ∞) are indicated by
regions G1 , G2 and G3 respectively.

polynomials are orthogonal, information about the zeros of 2F1 (−n, b; c; z) follows immediately from classical results
(cf. [1,13]). The asymptotic zero distribution of 2F1 (−n, b; c; z) when b and c depend on n can be deduced from recent
results by Kuijlaars, Martínez-Finkelshtein, Martínez-González and Orive (cf. [14–17]) on the asymptotic zero distribution
of Jacobi polynomials P (α,β)

n (x) when the parameters α and β depend on n. Conversely, if the distribution of the zeros of
2F1 (−n, b; c; z) is known, this leads to information about the zero distribution of other special functions (cf. [3]). Thismakes
knowledge of the zero distribution of 2F1 (−n, b; c; z) extremely valuable.

The orthogonality of the polynomials 2F1 (−n, b; c; z) given in the next theorem follows from the orthogonality of the
Jacobi polynomials (cf. [18, pp. 257–261]) and can also be proved directly using the Rodrigues’ formula for the polynomials
2F1 (−n, b; c; z) (cf. [1, p. 99]) as was done in [19,15].

Theorem 1 (cf. [19]). Let n ∈ N0, b, c ∈ R and −c ∉ N0. Then 2F1 (−n, b; c; z) is the nth degree orthogonal polynomial for the
n-dependent positive weight function |zc−1(1 − z)b−c−n

| on the intervals

(i) (−∞, 0) for c > 0 and b < 1 − n;
(ii) (0, 1) for c > 0 and b > c + n − 1;
(iii) (1, ∞) for c + n − 1 < b < 1 − n.

As a consequence of orthogonality, we know that for each n, the n zeros of 2F1 (−n, b; c; z) are real, simple and lie in the
interval of orthogonality for the corresponding ranges of the parameters (see, for example, [20, Theorem 4]) as illustrated
in Fig. 1.

In his classical paper (cf. [21]), Felix Klein obtained results on the precise number of zeros of 2F1 (a, b; c; z) that lie in each
of the intervals (−∞, 0), (0, 1) and (1, ∞) by generalizing earlier results of Hilbert (cf. [22]). These Hilbert–Klein formulae
are valid for hypergeometric functions and not only for polynomials. Szegö recaptured these results for the special case of
Jacobi polynomials P (α,β)

n (x), which have a representation as 2F1 (−n, b; c; z), in the intervals (−∞, −1), (−1, 1) and (1, ∞)
(cf. [13, p. 145, Theorem 6.72]). The number and location of the real zeros of 2F1 (−n, b; c; z) for b and c real can be deduced
as follows.

Theorem 2 (cf. [6, Theorem 3.2]). Let n ∈ N, b, c ∈ R and c > 0. Then,

(i) For b > c + n, all zeros of 2F1 (−n, b; c; z) are real and lie in the interval (0, 1).
(ii) For c < b < c + n, c + j− 1 < b < c + j, j = 1, 2, . . . , n, 2F1 (−n, b; c; z) has j real zeros in (0, 1). The remaining (n− j)

zeros of 2F1 (−n, b; c; z) are all non-real if (n− j) is even, while if (n− j) is odd, 2F1 (−n, b; c; z) has (n− j− 1) non-real
zeros and one additional real zero in (1, ∞).

(iii) For 0 < b < c, all the zeros of 2F1 (−n, b; c; z) are non-real if n is even, while if n is odd, 2F1 (−n, b; c; z) has one real
zero in (1, ∞) and the other (n − 1) zeros are non-real.

(iv) For −n < b < 0, −j < b < −j+ 1, j = 1, 2, . . . , n, 2F1 (−n, b; c; z) has j real negative zeros. The remaining (n− j) zeros
of 2F1 (−n, b; c; z) are all non-real if (n− j) is even, while if (n− j) is odd, 2F1 (−n, b; c; z) has (n− j− 1) non-real zeros
and one additional real zero in (1, ∞).

(v) For b < −n, all zeros of 2F1 (−n, b; c; z) are real and negative.
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