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a b s t r a c t

In this paper we perform a comparison study of alternating direction implicit (ADI) and
operator splitting (OS) methods on multi-dimensional Black–Scholes option pricing mod-
els. The ADI method is used extensively in mathematical finance for numerically solving
multi-factor option pricing problems. However, numerical results from the ADI scheme
show oscillatory solution behaviors with nonsmooth payoffs or discontinuous derivatives
at the exercise price with large time steps. In the ADI scheme, there are source termswhich
include y-derivatives when we solve x-derivative involving equations. Then, due to the
nonsmooth payoffs, source terms contain abrupt changes which are not in the range of
implicit discrete operators and this leads to difficulty in solving the problem. On the other
hand, the OS method does not contain the other variable’s derivatives in the source terms.
We provide computational results showing the performance of the methods for two-asset
option pricing problems. The results show that the OS method is very efficient and gives
better accuracy and robustness than the ADI method with large time steps.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In today’s financial markets, options are the most common securities that are frequently bought and sold. Under the
Black–Scholes partial differential equation (BS PDE) framework, various numerical methods (see e.g., [1–5]) have been
presented by using the finite difference method (FDM) to solve the option pricing problems (see e.g., [6–12]). However
most option pricing problems have nonsmooth payoffs or discontinuous derivatives at the exercise price. Standard finite
difference schemes used to solve the problems with nonsmooth payoffs and large time steps do not work well because
of discontinuities introduced in the source terms. Moreover, these unwanted oscillations become problematic when we
estimate the Greeks, the hedging parameters such as Delta, Gamma, Rho, Theta, and Vega.

Let si(t), i = 1, 2, . . . , d denote the value of the underlying i-th asset at time t and u(s, t) denote the price of an option.
Here, s = (s1, s2, . . . , sd). In the Black–Scholes model [13], each underlying asset si(t) satisfies the following stochastic
differential equation:

dsi(t) = µisi(t)dt + σisi(t)dWi(t), i = 1, 2, . . . , d,

whereµi, σi, andWi(t) are the expected instantaneous rate of return, constant volatility, and standard Brownianmotion on
the underlying asset si, respectively. And the term dW contains the randomness which is certainly a feature of asset prices
and is assumed to be a Wiener process. The Wiener processes are correlated by


dWidWj


= ρijdt . Then the generalized BS

∗ Corresponding author. Tel.: +82 2 3290 3077; fax: +82 2 929 8562.
E-mail address: cfdkim@korea.ac.kr (J. Kim).
URL: http://math.korea.ac.kr/∼cfdkim (J. Kim).

0377-0427/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2013.01.008

http://dx.doi.org/10.1016/j.cam.2013.01.008
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cam.2013.01.008&domain=pdf
mailto:cfdkim@korea.ac.kr
http://math.korea.ac.kr/~cfdkim
http://math.korea.ac.kr/~cfdkim
http://math.korea.ac.kr/~cfdkim
http://math.korea.ac.kr/~cfdkim
http://math.korea.ac.kr/~cfdkim
http://math.korea.ac.kr/~cfdkim
http://dx.doi.org/10.1016/j.cam.2013.01.008


D. Jeong, J. Kim / Journal of Computational and Applied Mathematics 247 (2013) 162–171 163

PDE can be derived by using Ito’s lemma and the no-arbitrage principle:

∂u(s, t)
∂t

+

d
i=1

rsi
∂u(s, t)

∂si
+

1
2

d
i,j=1

ρijσiσjsisj
∂2u(s, t)
∂si∂sj

− ru(s, t) = 0,

u(s, T ) = Λ(s),

where r > 0 is a constant riskless interest rate and Λ(s) is the payoff function.
This paper is organized as follows. In Section 2, we introduce the Black–Scholes model in two-dimensional space and

describe the ADI and OS numerical methods for the BS PDE. In Section 3, we present several numerical results showing the
performance of the standard ADI and OS methods. Then we summarize our results in Section 4.

2. ADI and OS methods for the BS equation

In this paper, we focus on the two-dimensional Black–Scholes equation. Let LBS be the operator

LBS =
1
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− ru.

Then the Black–Scholes equation can be written as

∂u
∂τ

= LBS for (x, y, τ ) ∈ Ω × (0, T ], (1)

where τ = T − t . Originally, the option pricing problems are defined in the unbounded domain Ω × (0, T ] = {(x, y, t) |

x > 0, y > 0, τ ∈ (0, T ]}. However, we need to truncate this unbounded domain into a finite computational domain
in order to solve Eq. (1) numerically by a finite difference method. Therefore, we consider Eq. (1) on a finite domain:
(0, L)×(0,M)×(0, T ], where L andM are large enough so that the error in the price u is negligible. Let us first discretize the
given computational domainΩ = (0, L)× (0,M)with a uniform space step h = L/Nx = M/Ny and a time step1τ = T/Nτ .
Here, Nx,Ny, and Nτ are the number of grid points in the x-, y-, and τ -direction, respectively. Furthermore, let us denote
the numerical approximation of the solution by un

ij ≡ u(xi, yj, τ n) = u (ih, jh, n1τ), where i = 0, . . . ,Nx, j = 0, . . . ,Ny,
and n = 0, . . . ,Nτ . We use the vertex-centered discretization since we will use a linear boundary condition [7,14–16]:
∂2u
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∂2u
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(x, 0, τ ) =
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(x,M, τ ) = 0, for 0 ≤ x ≤ L, 0 ≤ y ≤ M, 0 ≤ τ ≤ T .

2.1. Alternating directions implicit method

The main idea of the ADI method (see e.g., [17,18]) is to proceed in two stages, treating only one operator implicitly at
each stage. First, a half-step is taken implicitly in x and explicitly in y. Then, the other half-step is taken implicitly in y and
explicitly in x. The full scheme is
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where the discrete difference operators Lx
ADI and L
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