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a b s t r a c t

In this paper, we address the issue of decomposing a given real-textured image into a
cartoon/geometric part and an oscillatory/texture part. The cartoon component is modeled
by a function of bounded variation, while, motivated by the works of Meyer [Y. Meyer,
Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, vol. 22 of
University Lecture Series, AMS, 2001], we propose to model the oscillating component v
by a function of the space G of oscillating functions, which is, in some sense, the dual space
of BV (Ω). To overcome the issue related to the definition of the G-norm, we introduce
auxiliary variables that naturally emerge from the Helmholtz–Hodge decomposition for
smooth fields, which yields to the minimization of the L∞-norm of the gradients of
the new unknowns. This constrained minimization problem is transformed into a series
of unconstrained problems by means of Bregman Iteration. We prove the existence of
minimizers for the involved subproblems. Then a gradient descent method is selected
to solve each subproblem, becoming related, in the case of the auxiliary functions, to
the infinity Laplacian. Existence/Uniqueness as well as regularity results of the viscosity
solutions of the PDE introduced are proved.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and related prior works

We limit the presentation to the two-dimensional case and to grey-scale images although the method can be extended
to higher dimensions and to vector-valued data. Let Ω be an open, bounded and connected domain in R2 with Lipschitz
continuous boundary and let f : Ω → R be a given observed image function. Decomposition techniques consist in
separating the geometric component u of f from the oscillatory part v. More precisely, as stressed in [1], the decomposition
of f into u + v can be phrased as a functional minimization problem of the following kind:

inf
(u,v)∈X1×X2

{F1(u) + λ F2(v), f = u + v},

with F1, F2 ≥ 0 two functionals and λ > 0, a tuning parameter. In order for this problem to bewell-posed, it is required that
X1 = {u, F1(u) < ∞} and X2 = {v, F2(v) < ∞}, and f ∈ X1 + X2. Also, F1(u) and F2(v) must be small, and F1(v) > F1(u),
F2(u) > F2(v) insuring that the two components can be properly discriminated. The choice X1 = BV (Ω) is well-suited
when representing homogeneous regions with sharp edges. In [2], Meyer shows that if the residual v defined by v = f − u
represents oscillations/texture or noise, a suitable space is the Banach space of generalized functions v(x, y) which can be
written as

v(x, y) = ∂x g1(x, y) + ∂y g2(x, y),
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g1, g2 ∈ L∞(R2), induced by the norm ∥v∥∗ defined by:

∥v∥∗ = inf
g⃗=(g1,g2)∈(L∞(R2))2, v=divg⃗

∥ |g⃗| ∥L∞(R2),

with |g⃗(x, y)| =


g2
1 (x, y) + g2

2 (x, y). The texture component is, in particular, better modeled than with the L2-space. Also,
alternative spaces could be considered such as the space F defined asGbutwith g1 and g2 belonging to the John andNirenberg
space BMO(Ω) (see [1] or [2] for further details). The author then proposes the following image decomposition model:

inf
u


Ω

|∇u| + λ ∥f − u∥∗,

with


Ω
|∇u| the total variation of u.

It is clear that this convex minimization problem cannot be directly solved in practice, owing to the particular form of
the ∥ · ∥∗ norm. Some prior related works focused on approximations of this model. Motivated by the approximation of the
L∞-norm of |g⃗|:g2

1 + g2
2


L∞

= lim
p→+∞

g2
1 + g2

2


Lp

.

Vese and Osher propose in [3] the following convex minimization problem:

inf
u,g1,g2

Gp(u, g1, g2) =


Ω

|∇u| + λ


Ω

|f − u − div g⃗|2 dx + µ


Ω


g2
1 + g2

2

p

dx
 1

p

 .

The first term guarantees that u ∈ BV (Ω), while the second ensures that div g⃗ is close to f − u and the last term penalizes
the Lp-norm of |g⃗|. Thus formally when λ → +∞ and p → +∞, the model is an approximation of the (BV ,G) model by
Meyer.

The case p = 2 corresponds to the space H−1(Ω) and is addressed in [4]. The authors assume the existence of a unique
Hodge decomposition of g⃗ as g⃗ = ∇P + Q⃗ with Q⃗ a divergence free vector field that is neglected afterwards. Consequently,
v = f − u = div g⃗ = 1P . It can be proved that for each v ∈ L2(Ω) with


Ω

v(x, y) dx dy = 0, there is a unique P ∈ H1(Ω)

such that v = −1P ,


Ω
P(x) dx = 0 and ∂P

∂ n⃗ = 0 on ∂Ω . This is then expressed by P = ∆−1v = ∆−1(f − u) and the
introduced minimization problem is phrased using the H−1-norm ∥v∥

2
H−1(Ω)

=


Ω
|∇(∆−1)(v)|2 dx.

Aujol et al. [5] propose another approximation of the (BV ,G) model by minimizing:

inf
(u,v)∈BV (Ω)×Gµ(Ω)


Ω

|∇u| +
1
2λ

∥f − u − v∥
2
L2(Ω)

,

with v ∈ L2(Ω) ∩ G(Ω) and where Gµ(Ω) = {v ∈ G, ∥v∥∗ ≤ µ}.
Recently, Elion and Vese [1] have presented a model in which the cartoon part is modeled by a function of bounded

variation and the oscillatory part as the Laplacian of a single-valued function whose gradient belongs to L∞. This is again
motivated by the decomposition of the field g⃗ into∇P+Q⃗ , Q⃗ being a divergence-free vector field that is neglected afterwards.
Given f ∈ L2(Ω), the proposed model is:

inf
u∈BV (Ω),

∇P ∈ (L∞(Ω))2

1P ∈ L2(Ω)


Ω

|∇u| + µ


Ω

|f − (u + 1P)|2 dx + λ ∥∇P∥L∞(Ω)

and is related to the absolutely minimizing Lipschitz extensions. A major difference with our proposed model is that we
use a split Bregman iteration approach, which avoids getting a fourth-order term in the Euler–Lagrange equations that is
difficult to handle numerically. Also, we consider the general Helmholtz–Hodge decomposition of smooth 2D vector fields
without neglecting the divergence-free component. At last, several theoretical results are provided.

To conclude this part and for the sake of completeness, we refer the reader to [6–9] for other outlooks of the problem of
image decomposition.

2. Modeling and theoretical results

2.1. Modeling

As previously stressed, the (BV ,G)model of Meyer cannot be directly solved in practice, due to the particular form of the
∥ · ∥∗-norm.We thus propose to decompose the vector field g⃗ bymeans of the Helmholtz–Hodge theorem (see [10] or [11]).
For smooth data, the Helmholtz–Hodge decomposition of 2D vectors g⃗ can be formulated as follows:

g⃗ = ∇d + J∇r + h⃗,

= D + R + h⃗,
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