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a b s t r a c t

We investigate how extra-precise accumulation of dot products can be used to solve ill-
conditioned linear systems accurately. For a given p-bit working precision, extra-precise
evaluation of a dot product means that the products and summation are executed in 2p-
bit precision, and that the final result is rounded into the p-bit working precision. Denote
by u = 2−p the relative rounding error unit in a given working precision. We treat two
types of matrices: first up to condition number u−1, and second up to condition number
u−2. For both types of matrices we present two types of methods: first for calculating an
approximate solution, and second for calculating rigorous error bounds for the solution
together with the proof of non-singularity of the matrix of the linear system. In the first
part of this paper we present algorithms using only rounding to nearest, in Part II we use
directed rounding to obtain better results. All algorithms are given in executable Matlab
code and are available from my homepage.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and notation

The solution of a linear system Ax = b is a ubiquitous task in numerical computations. In Part I and II of this paper
we present different methods to compute guaranteed error bounds for the solution of a linear system, i.e. with a certified
accuracy. Themethods in this Part I are based on normestimates, in particular verifying convergence of some residualmatrix
by approximating its Perron vector, whereas the methods in Part II are based on the verification of the H-property of some
matrix. Moreover, in the present Part I of the paper we (1) present a method to compute an approximation for extremely
ill-conditioned linear systems which is likely to be accurate.

In the present Part I all algorithms use only the four basic floating-point operations in rounding to nearest, in Part
II directed rounding is used as well. The challenge for the first part is to use only standard Matlab code in rounding to
nearest without additional mex-files and to derive simple and fast algorithms. All algorithms in both parts are presented in
executable Matlab-code.

Let a floating-point format with relative rounding error unit u be given. The forward error of an approximation x
computed by a standard algorithm like Gaussian elimination is of the order u · cond(A) [1]. This naturally bounds the
applicability to matrices A with cond(A) . u−1, which means cond(A) . 1016 in IEEE 754 double precision (binary64).
For larger condition numbers,x is expected to have no correct digit.

Skeel [2] showed that one step of the classical residual iterationwith the residual computed inworking precision produces
a backward stable result. It is also known that, for condition numbers up to cond(A) . u−1, an almost maximally accurate
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Table 1.1
Constants for single (binary32) and double (binary64)
precision in the IEEE 754 floating-point standard.

p emin emax

Single precision 24 −126 127
Double precision 53 −1022 1023

result (of order u) is achieved if the dot products in the residual iteration are accumulated in twice the working precision
(see also [3]). But for condition numbers of the order u−1 and larger, again no correct digit can be expected. So basically we
face the dichotomy of either high accuracy or no accuracy at all.

We will show that the accumulation of dot products in twice the working precision (with result rounded into working
precision) suffices to compute an accurate approximation of the solution of a linear system for condition numbers up to
cond(A) . u−2. Moreover, we show how rigorous error bounds can be computed including the proof on non-singularity of
the inputmatrixA. Practical experience suggests that this approachworks successfully up to condition numbers c ·cond(A) .
u−2 with c ≈ n2 in IEEE 754 binary64 (double precision). This factor will be improved to about c ≈ n in Part II of this paper.

We want to stress that our bounds are mathematically completely rigorous including all possible sources of errors
(provided the compiler and operating systemwork to their specification). Although it is in principle known how to compute
rigorous error bounds in rounding to nearest, the corresponding algorithms are involved, and taking care of underflow they
become unwieldy. One reason to divide the paper in two parts is to clearly distinguish between algorithms using solely
rounding to nearest (Part I), and those using directed rounding (Part II).

There are other, very good but not completely rigorous approaches. For example, an upper bound of the condition number
cond(A) implies an error bound of an approximate solution of Ax = b. There are many O(n2) condition number estimators
(cf. [4,1]), usually providing good approximations. By the principle of the methods these are lower bounds for the condition
number, and for every estimator counterexamples are known where the condition number is grossly underestimated.

In another approach [5,6] the authors use a statistic way for estimating rounding errors. Using a so-called stochastic
arithmetic they propose a method to determine the number of significant digits of a computed result. Also those results are
correct with a high degree of certainty, but not with complete rigor.

Yet another approach [3] uses the vast experience in solving linear systems very thoughtfully to produce approximations
with ‘‘likely correct error terms’’ [3]. It seems that no counterexample is knownwhere the claimed accuracy is not valid, but
it is not proved to be correct.

To repeat it, beyond accurate approximations for very ill-conditioned linear systems, we are also interested in
mathematically rigorous error bounds. Such rigorous bounds are, for example, mandatory in so-called ‘‘computer-assisted
proofs’’ [7], which recently gain interest. For example, Tucker [8] received the 2004 EMS prize awarded by the European
Mathematical Society for ‘‘giving a rigorous proof that the Lorenz attractor exists for the parameter values provided by
Lorenz. This was a long standing challenge to the dynamical system community, and was included by Smale in his list of
problems for the new millennium. The proof uses computer estimates with rigorous bounds based on higher dimensional
interval arithmetics’’.

Concerning notation denote by F a set of p-bit binary floating-point numbers including ∞ and NaN, i.e. [9]

F = {M · 2e−p+1
| M, e ∈ Z, |M| ≤ 2p

− 1, emin ≤ e ≤ emax} ∪ {−∞, +∞,NaN}. (1.1)

For single (binary32) and double (binary64) precision in the IEEE 754 floating-point standard [10,11] the constants are as in
Table 1.1. We assume floating-point operations in rounding to nearest, tie to even, as in the IEEE 754 standard. That means
there is a mapping fl : R → F such that |fl(x) − x| = minf∈F |f − x| for all x ∈ R, and for a, b ∈ F floating-point operations
◦fl : F × F → F with ◦ ∈ {+, −, ·, /} are defined by

a ◦fl b := fl(a ◦ b). (1.2)

Therefore the result a ◦fl b ∈ F is a best approximation of a ◦ b ∈ R. The relative rounding error unit is defined by u = 2−p.
A floating-point number M · 2e−p+1 is normalized if |M| ≥ 2p−1, the smallest normalized positive floating-point number
is realmin = 2emin , and the smallest unnormalized positive floating-point number is eta = 2emin−p+1. All algorithms are
given in executable Matlab code using IEEE 754 double precision, but the results are valid in any floating-point arithmetic
complying with the IEEE 754 standard.

Comparison between vectors and matrices is always to be understood entrywise, for example x ≤ y for x, y ∈ Rn means
xi ≤ yi for 1 ≤ i ≤ n. Executable Matlab-code is written using the ‘‘verbatim’’-font. For instance, C=A*B means that C
is the result of the floating-point multiplication A*B, where A and B are compatible quantities (scalar, vector, matrix). For
analyzing the error we use ordinary mathematical notation, for example in P = A · B the verbatim-font is used for floating-
point quantities so that P is the exact (real) product of A and B. For A, B ∈ Fn×n this implies |P − C| ∼ u|A| · |B|.
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