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1. Introduction and notation

The paper divides into two parts: In Part I all algorithms use only the four basic floating-point operations in rounding
to nearest, in the present Part Il we use directed rounding and methods different from Part I to obtain superior results. All
algorithms in both parts are presented in executable Matlab code.

The methods in Part I are based on norm estimates, verifying convergence of some residual matrix by approximating its
Perron vector. In this Part Il we verify the H-property of some matrix and demonstrate how this can be used to effectively
compute verified error bounds of the solution of a linear system. Moreover, we show an efficient method to compute so-
called “inner” inclusions of a linear system, the data of which is afflicted with tolerances.

Dividing the paper into two parts also serves didactical purposes. In Part I we demonstrate that using only rounding
to nearest allows us to give simple algorithms to produce rigorous results. The algorithms presented in Part II can still be
formulated in rounding to nearest, however, at the cost of easy readability.

All algorithms are given in executable Matlab code for which we reserve the “verbatim”-font. For instance, C = A * B
means that C is the result of the floating-point multiplication A * B, where A and B are compatible quantities (scalar, vector,
matrix). For analyzing the error we use ordinary mathematical notation, for example in P = A - B the verbatim-font is used
for floating-point quantities so that P is the exact (real) product of A and B. For A, B € F"*" this implies |P — C| ~ u|A| - |B|.
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Comparison between vectors and matrices is always to be understood entrywise, for example x < y for x, y € R"” means
x; <yjfor1 <i<n.ForA e R"™", Ostrowski’s comparison matrix (A) € R"*" is defined by

(A)i = |Ai] and (A); == —|Ay| fori #]. (1.1)

If (A) is an M-matrix, then A is called an H-matrix. In that case A and (A) are non-singular, and |[A~!| < (A)~'. Finally, o(A)
denotes the spectral radius of A.

This Part II of the paper is organized as follows. In the next section we discuss several methods to obtain rigorous error
bounds for linear systems based on H-matrices. In particular an efficient and best way is shown how to verify the H-property.
In Section 3 we discuss how to implement these methods for rigorous error bounds using directed rounding.

Up to this point, standard Matlab suffices. From Section 4 on, the algorithms become too involved and we use INTLAB [1],
the Matlab toolbox for reliable computing. The toolbox INTLAB is entirely written in Matlab and thus portable in many
environments. The only features of INTLAB we need are the basic interval operations, so other libraries such as Intlib [2],
Profil/Bias [3,4] or b4m [5] may be used as well.

In Section 4 linear systems, the data of which are afflicted with tolerances, are treated. Using interval operations the code
becomes easier to read without sacrificing performance and/or accuracy. Now the floor is prepared to discuss alternative
approaches to compute rigorous error bounds in Section 5. In particular a method originated by Hansen is discussed and
improved. In Section 6 we show how to obtain inclusions for extremely ill-conditioned matrices, i.e. with condition number
up to u2, and finally we show a new method to calculate inner inclusions, even if only one entry of the matrix and/or the
right hand side is afflicted with a tolerance. This allows us to judge the quality of outer inclusions. Detailed computational
results and a conclusion finish the paper.

2. Rigorous error bounds for linear systems

Let a linear system Ax = b with A € R™*" and b € R" be given. As in Part I let R € R™" be an approximate inverse of A,
for example computed by the Matlab command inv. Note that there are no a priori assumptions on A and R, in particular no
accuracy requirement on R. For the following explanation assume the matrices A and R to be non-singular; in the following
theorems this will be verified a posteriori by the methods.

Define C := RA. For an approximation X to the solution A~'b we show several ways how to estimate

A=X—A""b=CTRAX—b) =C"'c withc :=R(b — A%). (2.1)
In Part I of this paper we used normwise error estimates. Define T := diag(t) for a positive vector t € R". Defining F :=—C
and exploring

Cle=c+C'Fe=c+TU =T 'FI)"'T'Fc (2.2)
and using |EX| < ||X|loo - |[Ele forE € R™", x € R"and e := (1, ..., 1) € R" we obtain

X—A""b| < |c|+ 10 =T 'FT) T 'Fe|| o - Te

IT~"Felloo

< el 4
1— T Tl

t, (2.3)
provided | T™FT||sc < 1 (see Theorem 4.14 in Part I). Note that this is true for any 0 < t € R™ Since |[T7'FT |l =
IT~|F|T|lss = IT~'|F|Tel|ls, the obvious choice for Te is the Perron vector t of |F|. Then |F|t = ot implies T~!|F|Te = ge,
minimizing ||T~'FT | «. For very ill-conditioned matrices, the choice t = e may fail due to ||F|« > 1, see Fig. 4.1 in Part I;
otherwise, however, due to rounding errors in finite precision, sometimes the choice t = e is superior to the Perron vector.

The previous result is based on the Neumann expansion C~! = (I — F)~! = I 4+ C~'F. If A is not too ill-conditioned,
then C = RA is not too far from the identity matrix and likely to be an H-matrix, which means that (C) is an M-matrix. The
matrix C is an H-matrix, also called generalized diagonally dominant, if and only if there exists some positive v € R" such
that u := (C)v > 0. For the moment assume such a vector v to be given.

Then C = RA is an H-matrix, so that A and R are non-singular. Denote by

(C):==D—E withD>0,E>0 (2.4)
the splitting of (C) into diagonal and off-diagonal part. Note that u = (C)v > 0 implies D > 0. Set
G:=1—-(C)D"'=ED"!'>0. (2.5)

Following [6] define

G.
wy = max —= for1 <k <n, (2.6)
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