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a b s t r a c t

This paper compares different a posteriori error estimators for nonconforming first-
order Crouzeix–Raviart finite elementmethods for simple second-order partial differential
equations. All suggested error estimators yield a guaranteed upper bound of the discrete
energy error up to oscillation termswith explicit constants. Novel equilibration techniques
and an improved interpolation operator for the design of conforming approximations of the
discrete nonconforming finite element solution perform very well in an error estimator
competition with six benchmark examples.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The a posteriori error analysis of conforming FEM is well established and contained even in textbooks [1–5]. Although a
unified framework is established [6], much less is known about a posteriori error analysis for nonconforming lowest-order
Crouzeix–Raviart finite element methods [7–15].

The Helmholtz decomposition allows a split of the error in the broken energy norm

|||e|||2NC 6 η2 + |||ResNC |||
2
⋆.

The first term η on the right-hand side involves contributions of the data f and is directly computable (up to quadrature
errors); cf. (3.1) for an explicit representation. The second term |||ResNC |||⋆ in the upper error bound is theweighted dual norm
of some residual which can indeed be estimated by a posteriori error estimators for Poisson problems such as equilibration
error estimators [2,3,16–19], least-squares error estimators [5] or localisation error estimators [20]; another class of possible
estimators exploits the identity

|||ResNC |||⋆ = min
v∈H1(Ω)

v=uD on ∂Ω

∥~1/2(∇NC uCR − ∇v)∥L2(Ω)
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Table 1
Benchmark Poisson examples and subsection references.

Ref. Short name Problem data Feature

7.1 L-shaped domain f ≡ 0, uD ≠ 0, ~ ≡ 1 Corner singularity
7.2 Slit domain f ≡ 1, uD ≠ 0, ~ ≡ 1 Slit singularity
7.3 Square domain f ∉ P0(T ), uD ≡ 0, ~ ≡ 1 Oscillations
7.4 3/4-Disk domain f ∉ P0(T ), uD ≡ 0, ~ ≡ 1 Osc. and corner sing.
7.5 Square domain f ≡ 0, uD ≠ 0, ~ ≠ 1 Diffusion jumps
7.6 Octagon domain f ≡ 0, uD ≠ 0, ~ ≠ 1 Diffusion jumps

Table 2
Classes of a posteriori error estimators in this paper.

No Classes of error estimators Class representatives

1 Interpolation ηA, ηMP1RED(0), ηPMRED , ηAP2
2 Minimisation ηMP1, ηMP1RED(k), ηMP2
3 Equilibration ηB, ηLW
4 Least-squares ηRepin
5 Localisation ηCF

of [6,12] and Theorem 3.1b. Those upper bounds of |||ResNC |||⋆ compute some test functions vxyz ∈ H1(Ω) with u = uD on
∂Ω and evaluate

|||ResNC |||⋆ 6 ∥~1/2(∇NC uCR − ∇vxyz)∥L2(Ω).

Three explicit designs in Sections 4.1–4.2 provide estimators fromµA after [12] andµAP2 after [15,21,22], plus novel error
estimatorsµMP1RED(0) andµPMRED while global minimisation in some discrete subspace leads in Section 4.3 toµMP1, µMP1RED
and µMP2.

This paper concerns the Poisson model interface problem: Given a right-hand side f ∈ L2(Ω), the Dirichlet data
uD ∈ H1(Ω) and some bounded, piecewise constant diffusion coefficient

0 < ~ 6 ~(x) 6 ~ < ∞ for a.e. x ∈ Ω (1.1)

in the domainΩ , seek u ∈ H1(Ω)with

− div (~∇u) = f inΩ and u = uD on ∂Ω. (1.2)

The primal variable uwill be discretised with nonconforming Crouzeix–Raviart FEMs on some regular triangulation T ofΩ
into triangles.

In this paper, the a posteriori error estimators of Table 2 compete in the 6 benchmark problems of Table 1. The 11 error
estimators also give rise to adaptive mesh-refinement strategies with the overall experience that all lead to comparable
mesh refinement that recovers the optimal convergence rate. Numerical evidence supports the superiority of the novel
error estimator ηPMRED from Section 4.2 and ηAP2 for adaptive a posteriori error control with efficiency indices in the range of
1.2–1.5. Since the overhead by η leads to only little overestimation of around 15%, it is indeed worth to utilise a more costly
and more accurate evaluation of |||Res|||⋆. In examples with constant coefficients, three iterations of some preconditioned
conjugated gradient scheme with initial value µMP1RED(0) leads to a cheap and highly efficient error estimator µMP1RED(3)
close to the optimum µMP1RED(∞); in examples with discontinuous coefficients the improvement after three iterations is
less significant.

The remaining parts of this paper are outlined as follows. Section 2 introduces the necessary notation and preliminaries.
Section 3 presents the a posteriori error analysis. Section 4 gives details on the realisations of upper bounds of |||ResNC |||⋆.
Section 5 deals with modifications in case of inhomogeneous boundary conditions. The novel application of equilibration
techniques for a posteriori error control of nonconforming finite element methods is introduced in Section 6. In Section 7
all estimators of Table 2 are compared with the six benchmark problems from Table 1. Section 8 draws some conclusions
on the numerical experiments and adds some overall remarks.

2. Notation and preliminaries

2.1. Crouzeix–Raviart finite element spaces

Given a regular triangulation T of the bounded Lipschitz domainΩ ⊆ Rd, d = 2, 3, into triangles with edges E , nodes
N and free nodes M, the midpoints of all edges are denoted by mid(E) := {mid(E) | E ∈ E} and the boundary edges along
∂Ω are denoted by E(∂Ω) := {E ∈ E | E ⊆ ∂Ω} while E(Ω) := E \ E(∂Ω).
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