
Journal of Computational and Applied Mathematics 245 (2013) 162–181

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A kernel class allowing for fast computations in shape spaces
induced by diffeomorphisms
Aastha Jain ∗, Laurent Younes
Department of Applied Mathematics and Statistics and the Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA

a r t i c l e i n f o

Article history:
Received 10 January 2011
Received in revised form 1 August 2012

Keywords:
Reproducing kernel spaces
Diffeomorphisms
Riemann metrics
Computational anatomy

a b s t r a c t

Reproducing kernel Hilbert spaces play an important role in diffeomorphic matching
of shapes and in which they intervene in the construction of Riemannian metrics on
diffeomorphisms and shape spaces. In such contexts, they are directly involved in the
expressions of geodesic equations, and in their numerical solutions via particle evolutions.
Solving such equations, however, involves computing kernel sums over irregular grids
which can be a big computational overhead if the number of particles is large. In this
paper we introduce and establish properties of a finitely generated kernel class in which
the kernel is defined using a double interpolation from a discrete kernel supported by a
regular grid covering the domain of the system of particles under consideration. It not only
speeds up the calculations by utilizing standard algorithms for faster computations over
regular grids, but also maintains the exactness and consistency of the system. We provide
experimental results in support of this, comparing in particular the computation time and
accuracy to similar competing methods.

Published by Elsevier B.V.

1. Introduction

Because they make possible the analysis of complex nonlinear models within a convenient Hilbertian context,
reproducing kernels, and their associatedHilbert spaces, provide a powerful framework that has foundmultiple applications
inmany domains, including approximation theory, probability, statistics, machine learning, or computer graphics. They also
play an essential role in diffeomorphic shape analysis, which is our field of interest here, for which they provide elegant
constructions of Riemannian metrics on diffeomorphisms and shape spaces, and constitute primary building components
for the numerical solution of geodesic equations, parallel transport, optimal registration and other specific issues in this
context. These operations are very naturally implemented as particle evolutions, and for large-scale problems (in which
particles correspond, for example, to vertices of densely discretized triangulated surfaces), they require repeated evaluations
of massive kernel sums, which induce a substantial computational burden. We address this issue in the present paper by
selecting reproducing kernels for which the induced sums have controllable computational cost, while making sure that the
most important theoretical requirements of the analysis remain satisfied. We will for this purpose use a class of discretely
generated kernels, which induce a computational cost that remains linear in the number of particles.

Our test-bed algorithm will be the Large Deformation Diffeomorphic Metric Matching (LDDMM), in the context of surface
registration. Several versions of LDDMM have been introduced for matching curves, surfaces and images in 2D and 3D. The
surface case has been introduced in [1,2] and has become an important component of the computational anatomy toolkit.
One of the main operations in computational anatomy, as introduced in [3], is the registration of anatomical structures via
geodesic deformations on groups of diffeomorphisms. This consists in finding a time-dependent deformation of minimal
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energy (in the sense of a Riemannian metric defined on the diffeomorphism group) that transports (or almost transports) a
template anatomy onto an observed one. The evolution in this context is driven by a geodesic equation (called EPDiff), which,
in the case of objects represented as point sets (like triangulated surfaces) reduces to a high dimensional system of ordinary
differential equations (ODEs).Wewillmeasure the impact of using our kernel class on the solution of the variational problem
that consists in optimizing the initial conditions of the EPDiff equations to ensure that their solution at time 1 approaches
the object of interest.

The EPDiff equation is a Hamiltonian form of the geodesic equation on diffeomorphisms. In d dimensions, its definition
involves a positive kernel (x, y) → KV (x, y), which, in full generality, takes values in the set of d by d matrices, satisfying
KV (y, x) = KV (x, y)T and, for all pairwise distinct z1, . . . , zn ∈ Rd and all β1, . . . , βn ∈ Rd,

n
i,j=1

βT
i KV (zi, zj)βj ≥ 0,

the above sum vanishing if and only if all βj’s are zero. EPDiff describes the time evolution of a point set, x(t) = (xi(t), i =

1, . . . ,N), with xi(t) ∈ Rd, together with corresponding momenta, α(t) = (α1(t), . . . , αN(t)), with αi(t) ∈ Rd, and takes
the following form:

∂txk(t) =

N
l=1

KV (xk(t), xl(t))αl(t)

∂tαk(t) = −

N
l=1

d
i,j=1

αk,i(t)αl,j(t)∇1K
i,j
V (xk(t), xl(t))

(1)

where αk,j is the jth coordinate of αk, K
i,j
V is the (i, j) entry of KV and ∇1 denotes the gradient with respect to the first

component.
Here, the kernel KV generates a Hilbert space of vector fields onRd, according to the standard construction that completes

the space of finite sums

V 0
=


v(.) =

n
k=1

KV (·, zk)βk, z1, . . . , zn, β1, . . . , βn ∈ Rd, n ≥ 0


into a Hilbert space V for the norm: n

k=1

KV (·, zk)βk

2
V

=

n
k,l=1

βT
k KV (zk, zl)βl.

In particular, the evolving sequence of points and momenta (xk, αk, k = 1, . . . ,N) generated by (1) induces a time-
dependent vector field v(t, ·) defined by

v(t, x) =

N
k=1

KV (x, xk(t))αk(t). (2)

This also defines a flow of diffeomorphisms, ϕ(t, ·), via

∂tϕ(t, x) = v(t, ϕ(t, x)) (3)

(i.e., ϕ is the flow associated to the ODE ∂ty = v(t, y)). One can also notice that the first equation in (1) is equivalent to
xk(t) = ϕ(t, xk(0)), which says that the particles follow the flow of diffeomorphisms that they induce. Moreover, the path
t → ϕ(t, ·) in the group of diffeomorphisms is a geodesic for the right-invariant Riemannianmetric on this group defined by

∥w∥ϕ = ∥w ◦ ϕ−1
∥V , (4)

which implies that ϕ(t, ·)minimizes

E0(v) =

 1

0
∥v(t, ·)∥2

Vdt

subject to the constraint (3), with fixed boundary conditions at t = 0 and t = 1 (with ϕ(0, ·) = idRd ). In particular, E0(v)
for v given by (2) is the square of the Riemannian distance between idRd and ϕ(1, ·) for this metric.

Although themost general construction for reproducing kernels on spaces of vector fields involvesmatrix-valued kernels
(as considered above), we will make in the following the simplifying assumption that KV is derived from a scalar kernel,
so that

KV (x, y) = K̃V (x, y)IdRd
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