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a b s t r a c t

The numerical solution of a nonlinear degenerate reaction–diffusion equation of the
quenching type is investigated. While spatial derivatives are discretized over symmetric
nonuniform meshes, a Peaceman–Rachford splitting method is employed to advance
solutions of the semidiscretized system. The temporal step is determined adaptively
through a suitable arc-length monitor function. A criterion is derived to ensure that the
numerical solution acquired preserves correctly the positivity and monotonicity of the
analytical solution. Weak stability is proven in a von Neumann sense via the ∞-norm.
Computational examples are presented to illustrate our results.
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1. Introduction

Nonlinear degenerate reaction–diffusion equations of the quenching type play a vital role in modeling many important
physical and engineering processes such as with the modeling of internal combustion [1–4]. These mathematical models
may develop singularities in solutions or their derivatives in finite time [2,5–7]. The phenomena can be physically
observedwhen certain environmental parameters exceed their limits in applications. Amathematical interpretation of such
singularities is that the nonlinear forcing terms in the differential equations become unboundedwhen certain critical values
are reached in finite time [2,8–10,7]. It has been extremely meaningful to estimate these critical values and the time upon
which a quenching may occur through efficient and effective numerical algorithms [6,11–13].

Consider a two-dimensional solid fuel ignition model where the activation energy method has decoupled, that is, the
dynamics of temperature is independent of the single-species mass fraction [14]. Let D = (0, a)× (0, b) for a, b > 0, ∂D be
its boundary, and letΩ = D × (0, T ), S = ∂D × (0, T )where T ∈ (0,∞). A degenerate reaction–diffusion problem of the
quenching type modeling the anticipated internal combustion process is [5,9,10]

x2 + y2
q/2

ut = uxx + uyy + f (u), q ≥ 0, (x, y, t) ∈ Ω, (1.1)

u(x, y, t) = 0, (x, y, t) ∈ S, (1.2)
u(x, y, 0) = u0(x, y), (x, y) ∈ D, (1.3)

where the nonlinear source function, f (u), is strictly increasing for 0 ≤ u < 1 with

f (0) = f0 > 0, lim
u→1−

f (u) = ∞.
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The function u(x, y, t) represents the temperature in the rectangular channel, and x and y are coordinates in the
perpendicular and parallel directions to the channel walls, respectively. The function


x2 + y2

q/2 represents a singularity
in the temperature transportation speed causing a degeneracy in Eq. (1.1) [2,15,16]. The parameter q ∈ [0, 2), for which
values close to two indicate a stronger degeneracy in the modeling equation, that is, a stronger defect in the transportation
of heat throughout the channel, thus breaking symmetry. The upper bound on q ensures that the inverse of the degeneracy
is integrable in the L2(D) space. The initial temperature 0 ≤ u0 ≪ 1. The solution of (1.1)–(1.3) is said to quench if there
exists a finite time Tc such that

sup

|ut(x, y, t)| : (x, y) ∈ D


→ ∞, as t → T−

c . (1.4)

The value of Tc is referred as the quenching time. A necessary condition for this to occur is

max

|u(x, y, t)| : (x, y) ∈ D


→ 1−, as t → T−

c . (1.5)

It has been shown that if f , fu are nonnegative, then, for any fixed ratio a/b, there exists a unique critical domain Dc , the
quenching domain, for which the solution of (1.1)–(1.3) quenches and is unique prior to Tc [17,18,9].

Although considerable efforts have been devoted to the field in recent years [5,19,20,10,11,21,22], the development of
the theory and computation of quenching solutions, including estimations of quenching domains for (1.1)–(1.3), is still in
its infancy. The complication in the numerical study is owed primarily to the following two facts. First, the strong nonlinear
singularity may cause rapid changes in the gradient and time derivatives of u as quenching is approached. This requires fine
resolution in the spatial and temporal grids. Adaptation of the underlying grids in space and time are often necessary for
capturing the singularity precisely. Second, quenching type models are often multi-dimensional and attention needs to be
given to the efficiently in singular computations. Splitting techniques have an edge on this issue as they offer efficient and
effective means of advancing the numerical solution despite the Sheng–Suzuki barrier [23].

Motivated by aforementioned concerns, this paper focuses on a highly efficient algorithm that employs temporal
adaptation coupled with nonuniform meshes. In particular, a suitable criterion is derived that preserves both positive and
monotonic properties of the numerical solution while a weak stability is maintained in the presence of perturbations.
Additionally, we motivate the use of specially-tailored exponentially graded grids, that is, static nonuniform grids
focused about the quenching location. These grids are developed from a priori knowledge of the quenching location and
solution shape. Our computational experiments indicate that the employment of such grids allow the computation to be
accomplished with fewer grid points while maintaining an excellent agreement with prior results that used larger fixed,
fine, and uniform meshes [5,10].

This paper is organized as follows. In Section 2, a second order Peaceman–Rachford splitting scheme is introduced
for solving the singular problem (1.1)–(1.3) directly. Temporal steps are determined adaptively through a suitable arc-
length monitor function [5]. Finite differences for approximating the spatial derivatives are introduced over a symmetric
nonuniform mesh. In Section 3, it is shown that the monotonic property is conserved by the sequence of discrete
solutions. Section 4 is devoted to a study of the numerical stability of the adaptive splitting method implemented.
Further, Section 5 provides two illustrative examples from computational experiments calculating quenching domains
and respective quenching times with the proposed decomposition algorithm. It is found that our results match existing
calculations and theoretical predictions satisfactorily. Moreover, the agreement between the theoretical and numerical
predications are improved. Finally, a brief summary about the results obtained, as well as some concerns and expectations,
are given in Section 6. In the ensuing discussion all lowercase bold letters indicate vectors, uppercase letters are used for
matrices. The infinity-norm is used throughout discussions unless otherwise specified.

2. Variable step splitting scheme

The problem (1.1)–(1.3) is rescaled, namely,

ut =
1

a2φ(x, y)
uxx +

1
b2φ(x, y)

uyy +
f (u)
φ(x, y)

, (x, y, t) ∈ Ω,

0 = u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t), (x, y, t) ∈ S,
u(x, y, 0) = u0(x, y), (x, y) ∈ D,

where φ(x, y) =

a2x2 + b2y2

q/2
, q ≥ 0, and D = (0, 1)× (0, 1).

Utilizing the nonuniform central difference approximation formulas discussed in [24], for given N > 1, we may replace
spatial derivatives in the differential equation on any variable step mesh (xi, yj), for i, j = 0, . . . ,N. Let hk = xk+1 − xk =

yk+1 − yk be the spatial step-size in both x and y directions. Consider a set of nonuniform step-sizes defined by

hk =
1

2
√
N∗
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, (2.1)
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