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a b s t r a c t

Recently, there has been a growing interest in the analysis of multi-dimensional data
arrays (e.g. when a univariate response is sampled in 3-D space or when a multivariate
response is sampled in time and 2-D space). In this article, we scrutinize the problem
of maximum likelihood estimation (MLE) for the tensor normal distribution of order 3
or more, which is characterized by the separability of its variance–covariance structure;
there is one variance–covariance matrix per dimension. In the 3-D case, the system of
likelihood equations for the three variance–covariance matrices has no analytical solution,
and therefore needs to be solved iteratively. We studied the convergence of an iterative
three-stage algorithm (MLE-3D) thatwepropose for this, determined theminimumsample
size required for matrix estimates to exist, and computed by simulation the empirical
bias and dispersion of the Kronecker product of the three variance–covariance matrix
estimators in eight scenarios. We found that the standardized bias and a matrix measure
of dispersion decrease monotonically and tend to vanish with increasing sample size, so
the Kronecker product estimator is consistent. An example with 3-D spatial measures of
glucose content in the brain is also presented. Finally, results are discussed and the 4-D
case is presentedwith simulation results in an appendix. Software is available for interested
users.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

There is growing literature on the analysis of two-dimensional (2-D) and three-dimensional (3-D) data arrays, also
called ‘‘multi-way data’’ [1–5]. Such data present correlations and heterogeneity of the variance, both within and among
dimensions, through multiple responses and space–time levels. The variance–covariance structure is then often modeled
to reduce the number of parameters and ensure the existence of parameter estimates. In a separable model (sometimes
called ‘‘factorized’’ or ‘‘Kronecker structured’’), the variance–covariance matrix of the vectorized multi-dimensional array
is the Kronecker (direct) product of a number of variance–covariance matrices equal to the number of dimensions. The
variance–covariance matrices used as factors in the Kronecker product define the respective dependencies and variability
among rows and columns in 2D and among rows, columns and edges (or slices) in 3D and beyond.

In 2D, Dutilleul [6–8] presented an iterative two-stage algorithm (MLE-2D) to estimate by maximum likelihood (ML) the
variance–covariance parameters of the matrix normal distribution X ∼ Nn1,n2(M,U1,U2), where the random matrix X is
n1×n2,M = E(X),U1 is the n1×n1 variance–covariancematrix for the rows ofX (e.g. repeatedmeasures in space), andU2 is
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the n2×n2 variance–covariancematrix for the columns ofX (e.g. repeatedmeasures in time). Thematrix normal distribution
model implies a separable variance–covariance structure, defined by U2 ⊗ U1. Other authors also studied the MLE-2D
algorithm, and later nicknamed it ‘‘flip-flop’’ [9].Werner et al. [5] compared it to four alternative estimation procedures, and
found itwas providing estimatorswith the lowest normalized root-MSE (mean square error), startingwith very small sample
sizes. The MLE-2D algorithm was found to be useful in brain science [3], image analysis [1], biochemistry [4], electrical
engineering [5], and the environmental sciences [10], for example. Two unstructured variance–covariance matrices (with
no other assumption than positive definiteness) are then estimated using a small number K of replicates, with K ≥

max( n1
n2

,
n2
n1

) + 1, in order to ensure that the estimated variance–covariance matrices are positive definite.
Three-dimensional data arrays are obtained when a single response is sampled in 3-D space or in 2-D space and time

or when multiple responses are recorded in 2-D space or in 1-D space and time. In the natural and life sciences, such
data are provided by the measurement of wood density in given growth rings and directions at several heights in a tree
trunk [11], the recording of a vector of air pollutants at a number of field stations over months [2], and the monitoring
of a vector of physiological variables in different organs over days [12]. These data have rarely been analyzed by using a
3-D statistical methodology, apparently because it was not easy to access and the computational tools were not available.
As the collection of 3-D data arrays is rising, it has become timely to fill in the gap. Therefore, we present the MLE-3D
algorithm, define its conditions of application, and study by simulation the properties of estimators in this article. In that
non-trivial extension of the MLE-2D algorithm, the parameters are estimated by maximum likelihood under the relevant
statistical distribution called a ‘‘tensor normal distribution’’ and characterized by multivariate normality and a separable
three-way variance–covariance structure, with no need to specify a variance–covariance matrix model at each dimension.
Below, we summarize the approach followed and the results obtained in five earlier studies where a three-way separable
variance–covariance structure was used for data analysis, prior to inserting our contribution in the developing field and
explaining how our article is organized.

In 1993, Barton and Fuhrman [13] explored themodeling of the variance–covariance structure ofmulti-dimensional data
arrays that commonly arise in signal processing problems. They presented a notation systembased on a ‘‘natural hierarchical
block structure on the covariance data’’, and discussed the variance–covariance structures of block-circulant, block-Toeplitz
type vs. unstructured type, with a limited discussion of estimation algorithms. Corrections were provided in [14].

Still in 1993, Mardia and Goodall [2, p. 358] presented an iterative three-stage estimation algorithmwhich resembles the
MLE-3D algorithm that will be presented here, but the authors did not use it to analyze their multivariate spatio-temporal
data due to insufficient replication. Eventually, they applied the MLE-2D algorithm by making the assumption of some
temporal independence, and reported convergence in 10–14 iterations [2, p. 357]. Throughout, the authors assumed that
the expected value of the random multi-dimensional array was constant along one of the three dimensions (i.e. time), and
chose to use an isotropic variogram spherical model for the spatial variance–covariance matrix.

In the context of the analysis of doubly and triply repeated measures in the medical sciences, Galecki [15] tried various
types of variance–covariance structures, including autoregressive, compound symmetric, spherical (i.e. independence and
homoscedasticity), and unstructured. He also developed the concept of covariance profile, and presented one application of
an estimation algorithm without detailing it.

In 2006, an iterative ML algorithm for 3-D data arrays was proposed in [12], together with a likelihood ratio test
(LRT) aimed to assess the adequacy of a three-way separable model for the variance–covariance structure. The estimation
algorithm assumed an autoregressive or compound symmetric structure for one variance–covariance matrix, and an intra-
class correlation structure was assumed for the two others. The simulation study designed to verify the small-sample
behavior of the LRT was limited to a reduced form of the tensor normal distribution of order 3, in which one of the three
variance–covariance matrices was a scalar.

More recently, a Newton–Raphson type of algorithm (i.e. with no ‘‘flip-flop’’) was used in [16] to estimate by maximum
likelihood the parameters of the tensor normal distribution model. This algorithm was developed in the context of tensor-
valued signals in electrical engineering. In that Newton–Raphson ML algorithm, a score function is used and a variance
parameter is estimated in addition to the three variance–covariance matrices. Furthermore, Richter et al. [16] used a block-
diagonal approximation for the Hessian matrix required by the Newton–Raphson algorithm.

To our knowledge, Dutilleul [6] was the first to present the probability density function and the moment generating
function of the tensor normal distribution, using tensor notations inspired from McCullagh [17]. Other notations for tensor
operators such as the inner and outer products and the tensor multiplication appear more popular nowadays [18], so
Dutilleul’s original equations were re-written in Section 2 here. Still to our knowledge, Mardia and Goodall [2], followed
by Dutilleul [7], first proposed the MLE-3D algorithm for the tensor normal distribution, which was recently presented
in [19, p. 185, in 3-D or more] and [20, p. 15] in a theoretical framework and without numerical and simulation results
concerning the convergence of the algorithm and the empirical properties of the estimators. This is where our contribution
lies, i.e. in a detailed presentation of the algorithmwith numerical and simulation results in addition to practical guidelines
and software.

More specifically, we start by defining the tensor normal distribution of order 3 or more from the moment generating
function in the general case and from the probability density function in the regular case (of particular interest for ML
estimation) in Section 2; so doing, we will see that only the Kronecker product of variance–covariance matrices is defined
uniquely. In Section 3, the system of likelihood equations for the mean and variance–covariance parameters of the tensor
normal distribution of order 3 is derived; the complete MLE-3D algorithm is presented in details; and the minimum sample
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