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a b s t r a c t

We present an implicit finite element method for a class of chemotaxis models in three
spatial dimensions. The proposed algorithm is designed tomaintainmass conservation and
to guarantee positivity of the cell density. To enforce the discrete maximum principle, the
standard Galerkin discretization is constrained using a local extremum diminishing flux
limiter. To demonstrate the efficiency and robustness of this approach, we solve blow-
up problems in a 3D chemostat domain. To give a flavor of more complex and realistic
chemotactic applications, we investigate the pattern dynamics and aggregating behavior
of the bacteria Escherichia coli and Salmonella typhimurium. The obtained numerical results
are in good qualitative agreement with theoretical studies and experimental data reported
in the literature.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Chemotaxis, an oriented movement towards or away from regions of higher concentrations of chemical species, plays
a vitally important role in the evolution of many living organisms. Experimental studies confirm that certain species
(cells or bacteria) experience collective motion driven by attraction to or repulsion by other species (medicine, food,
tumor angiogenic factor) [1]. The simplest mathematical description of chemotactic cell motion via a system of partial
differential equations (PDEs) was proposed by Patlak [2], Keller and Segel [3,4]. Various extensions of their models have
been used to analyze tumor angiogenesis and invasion [5,6], vasculogenesis [7], mesenchymal motion [8,9], biological
pattern formation [10,11], multi-species chemotaxis with attraction and repulsion between competitive interacting species
[12,13] etc. Besides the consideration of PDE models for chemotaxis there is also a scientific interest in chemotaxis models
in the field of optimization algorithms by means of evolutionary concepts. Indeed Müller et al. [14] recently introduced an
optimization algorithmbasedonbacteria chemotaxis. Therein, amain issue is the choice of a suitable chemosensitivity. Some
of the aforementioned PDEmodels deal with alternative chemosensitivities which, therefore, may inspire improvements of
the basic optimization algorithm by Müller et al.

From the mathematical point of view, several interesting questions arise in the context of classical (also calledminimal)
chemotaxis PDEmodels (cf. Section 2 for a common formulation). In particular, unbounded aggregation of cellsmay give rise
to singularities at accumulation points. This phenomenon is known as the blow-up effect. Theoretical studies have shown
that solutions to the 1Dminimalmodel cannot blowup (see, e.g., [15]). In twodimensions, the existence of blow-up solutions
depends on the initial cell density u0 and chemotactic sensitivity χ . It is known that a (bounded) solution exists globally
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in time if ∥u0∥L1(Ω) < 4πχ−1 in the nonsymmetric case and ∥u0∥L1(Ω) < 8πχ−1 in the presence of radial symmetry [16].
Otherwise, a blow-up occurs in finite or in infinite time. For detailed results on finite time blow-up and blow-up in infinite
time for solutions of parabolic–elliptic and parabolic–parabolic chemotaxis models, we refer the reader to [17–20].

In three dimensions, the threshold for the blow-up effect may also depend on the initial cell density, on the form
of the chemotactic sensitivity, and on other parameters (see, e.g., [21,22]). Perthame [23] showed for parabolic–elliptic
chemotaxis model that there is a blow-up in finite time if (


Ω

|x|2u0(x) dx)2 < C∥u0∥
2
L1(Ω)

, where C is a small constant.
For parabolic–parabolic chemotaxis models Horstmann and Winkler [24] studied conditions under which the solution of
a chemotaxis system with a chemotactic sensitivity of the form χ = c uα (where c and α are some constants) remains
bounded or blows up in finite or infinite time. Their results prove the existence of initial data that give rise to blow-up
solutions of the classical chemotaxis model in a bounded domainΩ ⊂ R3. The existence, uniqueness, and uniform-in-time
boundedness of global classical solutions for a 3D chemotaxis–haptotaxis system were investigated by Tao and Wang [25].

Another interesting phenomenon is the fact that a homogeneous stationary solution may become unstable for large
values of the sensitivity functionχ(u) under some conditions on the reactive source term in the chemotactic growth system.
Such instabilities may give rise to rapidly evolving transient solutions, forming patterns which are observed in biological
experiments (see, e.g., [26,10,27]).

The wealth of the methods for the numerical solution of chemotaxis problems includes positivity-preserving finite
volume and finite element schemes [28–30], fractional step algorithms based on operator splitting [31,32], interior
penalty/discontinuous Galerkin methods [33,34], and cell-overcrowding prevention models [35–37]. However, special care
is required when it comes to the numerical simulation of the blow-up phenomenon and pattern formation. Steep gradients,
spikes, and propagating fronts may give rise to nonphysical oscillations if the numerical scheme is not guaranteed to
satisfy the discrete maximum principle (DMP). As a result, the cell density may become negative. Moreover, the blow-up or
instability of approximate solutions may occur for purely numerical reasons.

In the present paper, we employ a high-resolution finite element schemewhich satisfies the discretemaximumprinciple
for linear and multilinear approximations on unstructured meshes. This algorithm is labeled FEM-TVD since it is based on
a multidimensional generalization of total variation diminishing schemes for 1D conservation laws [38,39]. The proposed
methodology guarantees mass conservation and keeps the cell density nonnegative. Another objective of this paper is to
perform a series of numerical experiments for chemotaxis problems in the three-dimensional case. Most numerical studies
published to date are concerned with 2D simulations, whereas the numerical behavior of solutions in 3D remains largely
unexplored.

The article is organized as follows. In Section 2, we provide the analytical background and theoretical results for
chemotaxis models in 3D. In Section 3, we outline the FEM-TVD algorithm that we used in the numerical study to be
presented in Section 4. We demonstrate that the FEM-TVD method is well-suited for numerical simulations of chemotaxis
problems, even in situations when the pure Galerkin method fails. In Sections 4.2 and 4.3, we consider realistic chemotaxis
models which describe the aggregation and proliferation of the bacteria Escherichia coli and Salmonella typhimurium.
Section 5 summarizes the pros and cons of the proposed approach.

2. Analytical background and theoretical results for chemotaxis models in 3D

The generic form of the chemotaxis problem to be solved in a three-dimensional domainΩ ⊂ R3 reads
ut = ∇ · (D(u)∇u − A(u) B(c) C(∇c))+ q(u) inΩ, (1)
ct = d1c − s(u) c + g(u) u inΩ, (2)

where u(t, x) denotes the cell density and c(t, x) is the chemoattractant concentration. A particular model is defined
by the formulas for the generic coefficients D(·), A(·), B(·), C(·), q(·), d, s(·), g(·). The above transport equation for u and
reaction–diffusion equation for c are endowed with the initial conditions

u|t=0 = u0, c|t=0 = c0 inΩ. (3)
It is common to prescribe the homogeneous Neumann boundary conditions

n · ∇u = 0 n · ∇c = 0 on Γ , (4)
or total flux boundary conditions of the form

n · (D(u)∇u − A(u) B(c) C(∇c)) = 0, n · ∇c = 0 on Γ , (5)
where n is an outward normal to the boundary Γ = ∂Ω .

The generic form (1)–(2) has also been described in [40] with slightly different notations. In this reference Hillen and
Painter provided a summary over a number of variations of chemotaxis models like those considered in the current paper.

Before presenting a brief summary of the theoretical results for the above class of chemotaxis models, we cite a local
existence result for the following problem

ut = ∇(∇u − χ(u, c)∇c)+ f (u, c), x ∈ Ω, t > 0
τ ct = 1c + g(u, c), x ∈ Ω, t > 0
n · ∇u = n · ∇c = 0, x ∈ Γ , t > 0
u(0, x) = u0(x), c(0, x) = c0(x), x ∈ Ω.

 (6)
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