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a b s t r a c t

Using undetermined coefficients, we develop a meshfree method to approximate partial
derivatives of a multivariate real function from data on a finite set of possibly disordered
base points satisfying a natural condition which always holds true in the one dimensional
case. The method yields a generalization of Lagrange’s interpolation polynomial and a
recursive formula different from Neville’s algorithm.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Elementary methods to estimate derivatives of a real analytic function f on R are found in most texts on numerical
analysis. One such method used when data {f (pi)}mi=0 ⊂ R is given on a set of base points σ = {pi}mi=0 ⊂ R, consists in first
introducing the family of polynomials

li (p; σ) =


pj∈σ\pi

p − pj
pi − pj

(i = 0, . . . ,m) (1)

from which is then constructed the Lagrange polynomial

Lf (p; σ) =

m
i=0

f (pi) li (p; σ) (2)

(of degree at mostm) which interpolates {(pi, f (pi))}mi=0. The derivative

L(α) (p; σ) =

m
i=0

f (pi) l
(α)
i (p; σ)

for any given integer α ∈ {0, . . . ,m} is often a satisfactory polynomial approximation of f (α) (p) where, to ease
notation, by f (0) (p) we mean f (p) (see, for example [1–3]). We will show that this is equivalent to the method of
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undetermined coefficients (see for example [4, p. 291]) where, for any given α ∈ {0, . . . ,m}, the polynomial derivatives
l(α)
0 (p; σ) , . . . , l(α)

m (p; σ) satisfy the system

m
i=0

(pi − p)α
′

l(α)
i (p; σ) = α!δα′

α


α′

= 0, . . . ,m


(3)

with

δα′

α =


1 if α = α′

0 otherwise.

Condition (3) is the one dimensional version of (18) introduced later for σ ⊂ Rd (d ∈ N). As in higher dimensions, a
synthesis of Lagrange interpolation and themethod of undetermined coefficients is easier to attain by studying the solutions
l(α)
i (p; σ) of (3) instead of analyzing the αth derivative of the polynomial li (p; σ) given by (1). Furthermore, applying the
multidimensional version of (3) to the Taylor series of amultivariate function yields the error in approximating the derivative
of the function by the corresponding derivative of its Lagrange interpolation.

In the literature one findsmethods to estimate derivatives by replacing li (p; σ) in (2)with predetermined basis functions
(e.g. [5,6]). Furthermore, if one seeks partial derivatives only at the points of σ ⊂ Rd, pseudospectral methods can be
applied to the multidimensional version of (2) where f (xi) and li (p; σ) are replaced respectively by constants and radial
basis functions (e.g. [7,8]). In place of the modern approach based on well chosen basis functions, we use the method of
undetermined coefficients in a multidimensional setting. This method has never been fully developed in the literature. It
yields a multivariate Lagrange-like polynomial which interpolates the data. In the process we obtain a recursive formula
which, in the one dimensional case, is written as

L(α)
f (p; σ) = L(α)

f (p; σ \ pm) +

f (pm) − Lf (pm; σ \ pm)


l(α)
m (p; σ)

where lm (p; σ) is given by (1) for i = m. When α = 0 this recursive formula, which differs from Neville’s well
known algorithm (e.g. [9, p. 72]), follows easily from the uniqueness of the Lagrange interpolation polynomial Lf (p; σ)

in conjunction with the property lm

pj; σ


= δ

j
m∀pj ∈ σ . Subject to a natural condition on σ (see (17)), which is always

valid in the one dimensional case, we establish these same properties in the multivariate case and so obtain our recursive
result.

One also finds in the literature methods to approximate a multivariate function f and its derivatives by way of
triangulation-based algorithms. In [10,11] for example, base points σ = {(xi, yi)}mi=0 ⊂ R2 serve as vertices for a
triangulation and f is approximated in the vicinity of a given point (xi, yi) ∈ σ by way of a polynomial of the form

G (x, y) = f (xi, yi) + a (x − xi) + b (y − yi) + c (x − xi)2 + d (x − xi) (y − yi) + e (y − yi)2

where f (xi, yi) is part of the data. The real constants a, b, c, d, e are estimated by a least squares method weighted so as
to give those points of σ near (xi, yi) more relevance. The coefficients a and b are then taken as approximations for the
derivatives fx (xi, yi) and fy (xi, yi), respectively. Our method based on undetermined coefficients is free of weights assigned
(somewhat arbitrarily) at the points of σ \ (xi, yi) and provides error estimates.

As our tables will show, given sufficient data, approximating partial derivatives by undetermined coefficients is accurate
and can yield useful error bounds. It provides, for example, a meshfree method other than SPH (smoothed particle
hydrodynamics) to approximate gradients and Laplacians in partial differential equations associated with fluid dynamics
(see for example [12,13] and the references therein). The lack of numerical precision inherent to SPH is compounded by
the complexity of the few theoretical error bounds found in the literature [14–17]. By contrast, replacing the problematic
convolution in SPH with the method of undetermined coefficients based on (18) yields theoretical error bounds and
significantly better numerical results for the gradient and Laplacian. It also avoids situations of current concern to researchers
in SPHwhen particles (i.e. base points) are near a boundary. On the negative side, ourmethod ismore time consuming.When
data is limited, we can pass to a higher dimension so as to apply our techniques to level sets. Data associated with a set of
nodes in Rn is viewed as points on a surface in Rn+1. We assume that this surface is a level set for some real function G on
Rn+1 for which both the implicit function theorem and Taylor’s theorem hold. We obtain good interpolation results by our
method provided G is polynomial-like in the sense that its Taylor series converges rapidly to G. Furthermore, the method is
not subject to condition (17).

2. Preliminaries

For any fixed d ∈ N, a multi-index consists of an element α = (a1, a2, . . . , ad) of the d-dimensional product space N⋆d

where N⋆ is the class of nonnegative integers. The length of α is given by

|α| = a1 + a2 + · · · + ad

and when a1 = a2 = · · · = ad = 0 we denote α by α0 or simply 0. The following is reminiscent of the manner in which the
positive rationals are ordered (see also [18]).
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