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a b s t r a c t

In this paper numerical methods for solving stochastic differential equations with
Markovian switching (SDEwMSs) are developed by pathwise approximation. The proposed
family of strong predictor–corrector Euler–Maruyama methods is designed to overcome
the propagation of errors during the simulation of an approximate path. This paper not
only shows the strong convergence of the numerical solution to the exact solution but
also reveals the order of the error under some conditions on the coefficient functions. A
natural analogue of the p-stability criterion is studied. Numerical examples are given to
illustrate the computational efficiency of the new predictor–corrector Euler–Maruyama
approximation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic differential equations with Markovian switching (SDEwMSs) arise in mathematical models of hybrid systems
that possess frequent unpredictable structural changes. One of the distinct features of such systems is that the underlying
dynamics are subject to change with respect to certain configurations. Such models have been used with great success
in a variety of application areas, including flexible manufacturing systems, electric power networks, risk theory, financial
engineering and insurancemodeling; we refer the readers to Cheng et al. [1], Ghosh et al. [2], Jobert and Rogers [3], Mao and
Yuan [4], Rolski et al. [5], Smith [6], Wu et al. [7], Yang and Yin [8], Zhao et al. [9] and references therein.

Generally, although the fundamental theories such as the existence and uniqueness of the solution as well as stability
of SDEwMSs have been well studied, most of SDEwMSs cannot be solved analytically. Thus, appropriate numerical
approximation methods such as the Euler (or Euler–Maruyama) method are needed to apply SDEwMSs in practice or to
study their properties.

Yuan and Mao [10] first considered the numerical solutions of the following stochastic differential equation with
Markovian switching

dy(t) = f (y(t), r(t))dt + g(y(t), r(t))dW (t), t ≥ 0 (1.1)

with initial conditions y(0) = y0 ∈ Rd and r(0) = r0 ∈ S = {1, 2, . . . ,N}, f and g are sufficiently smooth so that Eq. (1.1)
has a unique solution. Here y(t) is referred to the state while r(t) is regarded as the mode. The system will switch from one
mode to another in a random way, and the switching between the modes is governed by a Markov chain. They proved the
mean-square convergence of the Euler–Maruyama (EM) approximation for this hybrid stochastic systems, and the order of
errorwas also estimated. Yin et al. [11] extended (1.1) to a family ofmore general jump-diffusionswithMarkovian switching,
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and proved the numerical solutions based on the finite-difference procedure converge weakly to the desired limit bymeans
of a martingale problem formulation.

During recent years, there also exist extensive studies which prove the convergence of the Euler–Maruyama method
applied to some stochastic differential equation with some additional features, like including predictor–corrector or linear-
implicit methods and including some sort of delay, jumps, Markovian switching or combinations thereof; see for example,
Bruti-Liberati and Platen [12,13], Hou et al. [14], Li and Hou [15], Mao and Yuan [4], Rathinasamy and Balachandran [16],
Schurz [17–19] among others. The corresponding proof is basically the same each time, the only novelty coming from
changing it a bit to deal with the additional feature.

It is well known that the Euler–Maruyama method and most other explicit schemes for solving stochastic differential
equations (SDEs) work unreliably and sometimes generate large errors; see for instance Klauder and Petersen [20], Petersen
[21], Milstein et al. [22]. Implicit and predictor–corrector schemes are designed to achieve improved numerical stability and
turn out to be better suited to simulation task. Generally, implicit schemes usually cost significant computational time and
are sometimes not reliably accomplished; however, this phenomenon can be avoidedwhen using some appropriate discrete
time schemes, including predictor–corrector methods. In Kloeden and Platen [23], predictor–corrector methods have been
proposed as weak discrete time approximations for solving SDEs, which can be used in Monte Carlo simulation. For the
strong discrete time approximation of solutions of SDEs, a family of predictor–corrector Euler methods has been developed
by Bruti-Liberati and Platen [13]. However, there are no strong predictor–corrector methods available for SDEwMSs yet.

In this paper,wedevelop anew family of strongpredictor–corrector Euler–Maruyama (PCEM)methods for SDEwMS (1.1),
which are shown to converge with strong order 0.5, and demonstrate their performance by considering some examples.

The rest of the paper is arranged as follows. In Section 2 we introduce some necessary notations and define a family
of strong predictor–corrector Euler–Maruyama approximate solutions to SDEwMSs. In Section 3 we show that the PCEM
solutions converge to the exact solution in L2 under the global Lipschitz condition and reveal that the order of convergence
is 0.5. In Section 4we extend the PCEM convergence results tomulti-dimensional case under certain conditions. In Section 5
the numerical stability of SDEwMSs will be introduced and discussed. In Section 6 some numerical examples are given
and compared for simulated paths with different degrees of implicitness to illustrate the computational efficiency of the
predictor–corrector Euler–Maruyama approximation. Finally, some concluding remarks and future works are provided in
Section 7.

2. Preliminary and algorithm

Let (Ω, F , {Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions. Suppose
that there is a finite set S = {1, 2, . . . ,N}, representing the possible regimes of the environment.Weworkwith a finite-time
horizon [0, T ] for some T > 0.

Consider the dynamic system given by (1.1) with initial values y(0) = y0 ∈ Rd and r(0) = i0 ∈ S, where f (·, ·) : Rd
×

S → Rd, g(·, ·) : Rd
× S → Rd×m, W = {W (t) = (W 1(t), . . . ,Wm(t))T , t ≥ 0} is an m-dimensional Ft-adapted Wiener

process, and r = {r(t), t ≥ 0} is a continuous-time Markov chain taking value in a finite state space S with the generator
Q = (qij)N×N given by

P{r(t + δ) = j|r(t) = i} =


qijδ + o(δ), if i ≠ j,
1 + qiiδ + o(δ), if i = j,

provided δ ↓ 0, and

−qii =


i≠j

qij < +∞.

We assume thatW and r are independent. Throughout this paper, we denote by | · | the Euclidean norm for vectors and
∥ · ∥ the trace norm for matrices.

2.1. Existence and uniqueness

Under certain conditions we can establish the existence of a pathwise unique solution of (1.1). Here we make the
following global Lipschitz (GL) and linear growth (LG) assumptions.

(H1) GL. There exists a constant L1 > 0, for all (x, i), (y, i) ∈ Rd
× S, such that

|f (x, i) − f (y, i)|2+ ∥ g(x, i) − g(y, i) ∥
2

≤ L1|x − y|2.

(H2) LG. There exists a constant L2 > 0, for all (x, i) ∈ Rd
× S, such that

|f (x, i)|2∨ ∥ g(x, i) ∥
2

≤ L2(1 + |x|2).

Remarks 2.1. It is easy to show that if f (·, ·), g(·, ·) satisfy the GL condition, then they also satisfy the LG condition, but, for
the convenience of our later statements, we explicitly require it here.
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