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a b s t r a c t

Image restoration is a fundamental problem in image processing. Except formany different
filters applied to obtain a restored image in image restoration, a degraded image can
often be recovered efficiently by minimizing a cost function which consists of a data-
fidelity term and a regularization term. In specific, half-quadratic regularization can
effectively preserve image edges in the recovered images and a fixed-point iteration
method is usually employed to solve the minimization problem. In this paper, the Newton
method is applied to solve the half-quadratic regularization image restoration problem.
And at each step of the Newton method, a structured linear system of a symmetric
positive definite coefficient matrix arises. We design two different decomposition-based
block preconditioning matrices by considering the special structure of the coefficient
matrix and apply the preconditioned conjugate gradient method to solve this linear
system. Theoretical analysis shows the eigenvector properties and the spectral bounds
for the preconditioned matrices. The method used to analyze the spectral distribution
of the preconditioned matrix and the correspondingly obtained spectral bounds are
different from those in the literature. The experimental results also demonstrate that
the decomposition-based block preconditioned conjugate gradient method is efficient
for solving the half-quadratic regularization image restoration in terms of the numerical
performance and image recovering quality.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Digital image restoration is an active research topic in various areas of applied sciences such asmedical and astronomical
imaging, film restoration, image and video coding. Usually, a common image degradation follows the model: a clean image
x ∈ Rn2 is observed in the presence of a spatially invariant blur matrix A ∈ Rn2×n2 and of an additive zero-mean Gaussian
white noise η ∈ Rn2 of standard deviation σ . Therefore, the observed image b is obtained as

b = Ax + η.

The aim of the image reconstruction is to obtain an estimate of the original image x from the observed image b. This task
can be mathematically settled by minimizing a cost function J : Rn2

→ R. The function J usually consists of a data-fidelity
term and a regularization termΦ that is weighted by a parameter β > 0. It can be precisely described as:

x̂ = min
x∈Rn2

J(x),

J(x) = ∥Ax − b∥
2
2 + βΦ(x),
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where ∥Ax − b∥
2
2 is the fidelity term, and the regularization termΦ is of the form

Φ(x) =

r
i=1

φ(gT
i x), (1.1)

with φ : R → R being a continuously differentiable function and gi : Rn2
→ R, i = 1, . . . , r , being linear operators.

Particularly, gi is the first- or the second-order difference operator. Let G denote the r × n2 matrix whose ith row is gi. For
the image x, Gx describes the edges of the image x to some extent. Assume that

A ≢ 0, G ≢ 0, φ ≢ 0 and ker(ATA) ∩ ker(GTG) = {0}, (1.2)

where ker(·) denotes the kernel of the corresponding matrix. Clearly, this assumption guarantees that α1ATA + α2GTG is a
symmetric positive definite matrix provided both α1 and α2 are positive constants.

In this paper, the convex and edge-preserving potential function φ : R → R is considered. Typical examples of such
functions are:

φ1(t) = |t|α, 1 < α < 2, (1.3)
φ2(t) = |t|/α − log(1 + |t|/α), (1.4)

φ3(t) =


α + t2, (1.5)

φ4(t) = log(cosh(αt))/α, (1.6)

φ5(t) =


t2/(2α), if |t| ≤ α,
|t| − α/2, if |t| > α,

(1.7)

where α > 0 in φj(t) (j = 2, 3, 4, 5) is a prescribed parameter; see [1–4]. We consider the case that φ is convex, even, and
is C2, and that

ATA is invertible and/or φ′′(t) > 0, ∀t ∈ R. (1.8)

The computation of the minimizer x̂ of the cost-function J is very costly because of the nonlinearity of the function J.
In [5,3], an augmented cost function J : Rn2

× Rr
→ R that involves an auxiliary variable v ∈ Rr in the following form is

proposed

J(x, v) = ∥Ax − b∥
2
2 + β

r
i=1


1
2
(gT

i x − vi)
2
+ ψ(vi)


, (1.9)

where

φ(t) = min
s∈R


1
2
(t − s)2 + ψ(s)


, ∀t ∈ R, (1.10)

and ψ : R → R is a prescribed dual potential function that can be determined by using the theory of convex conjugacy,
{vi} are the entries of the vector v. We remark that φ is a potential function used as the regularization term in (1.1). The
condition (1.10) ensures that

J(x) = min
v∈Rr

J(x, v), ∀x ∈ Rn2 .

The regularization term involved in J is half-quadratic, which is the reason of the method named. In [1], the minimizer
(x, v) of J is calculated by using alternatingminimization. In order to speed up the convergence rate of themethod, wemay
adopt the Newton-type method to solve (1.9). To this end, we revisit the Hessian of J(x, v), which is given by

H(x, v) =


2ATA + βGTG −βGT

−βG βI + β diag(ψ ′′(vi))


:=


H11 H12
H21 H22(v)


. (1.11)

Here, I represents the identity matrix, and diag(ψ ′′(vi)) is a diagonal matrix whose diagonal entries are given by {ψ ′′(vi)}.

Theorem 1.1 (Theorem 1.1 in [4]). Under the assumptions in (1.8) and (1.2), the Hessian matrix H(x, v) is symmetric positive
definite for all x and v.

Therefore, in each Newton’s iteration, the Newton equation leads to a structured symmetric positive definite linear
system

H(x, v)d = r. (1.12)

Themain contribution of this paper is to speed up the iterative procedure by solving (1.12) using the Preconditioned Conjugate
Gradient (PCG) method with decomposition-based preconditioners such that this kind of structured linear systems can be
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