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Article history: Image restoration is a fundamental problem in image processing. Except for many different
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Received in revised form 15 July 2012 often be recovered efficiently by minimizing a cost function which consists of a data-
fidelity term and a regularization term. In specific, half-quadratic regularization can
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Half-quadratic regularization

. method is usually employed to solve the minimization problem. In this paper, the Newton
Image restoration

Newton method method is applied to solve the half-quadratic regularization image restoration problem.
Matrix decomposition And at each step of the Newton method, a structured linear system of a symmetric
Preconditioner positive definite coefficient matrix arises. We design two different decomposition-based
PCG method block preconditioning matrices by considering the special structure of the coefficient
matrix and apply the preconditioned conjugate gradient method to solve this linear
system. Theoretical analysis shows the eigenvector properties and the spectral bounds
for the preconditioned matrices. The method used to analyze the spectral distribution
of the preconditioned matrix and the correspondingly obtained spectral bounds are
different from those in the literature. The experimental results also demonstrate that
the decomposition-based block preconditioned conjugate gradient method is efficient
for solving the half-quadratic regularization image restoration in terms of the numerical

performance and image recovering quality.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Digital image restoration is an active research topic in various areas of applied sciences such as medical and astronomical
imaging, film restoration, image and video coding. Usually, a common image degradation follows the model: a clean image

x € R™ is observed in the presence of a spatially invariant blur matrix A € R"™*"” and of an additive zero-mean Gaussian
white noise 5 € R"™ of standard deviation o. Therefore, the observed image b is obtained as

b=Ax+7.
The aim of the image reconstruction is to obtain an estimate of the original image x from the observed image b. This task
can be mathematically settled by minimizing a cost function g : R™ — R.The function 4 usually consists of a data-fidelity
term and a regularization term & that is weighted by a parameter 8 > 0. It can be precisely described as:
X = min J(X),
xe]R{”z

g(x) = |AX — b||3 + P (x),
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where ||AX — b||§ is the fidelity term, and the regularization term ¢ is of the form

r

DX) =Y p(gx), (1.1)

i=1

with ¢ : R — R being a continuously differentiable function and g; : R” R,i = 1,...,r, being linear operators.
Particularly, g; is the first- or the second-order difference operator. Let G denote the r x n? matrix whose ith row is g;. For
the image X, Gx describes the edges of the image x to some extent. Assume that

A0, G=#0, ¢=#0 and ker(ATA) Nker(G'G) = {0}, (1.2)

where ker(-) denotes the kernel of the corresponding matrix. Clearly, this assumption guarantees that o;ATA 4+ a,G'G is a
symmetric positive definite matrix provided both «; and «; are positive constants.

In this paper, the convex and edge-preserving potential function ¢ : R — R is considered. Typical examples of such
functions are:

o1 () =1t|*, 1<a <2, (1.3)
d2(t) = [t|/a — log(1 + |t]/a), (1.4)
$3(t) = Va +t2, (1.5)
¢4(t) = log(cosh(ut))/a, (1.6)

?/Qa), if|t] <a,

Ps(t) = {|t| —a/2, if|t] > «a, (1.7)

where a > 0in ¢;(t) (j = 2, 3,4, 5) is a prescribed parameter; see [1-4]. We consider the case that ¢ is convex, even, and
is C?, and that
ATAjisinvertible andjor ¢”(t) >0, VteR. (1.8)

The computation of the minimizer X of the cost-function ¢ is very costly because of the nonlinearity of the function g.

In [5,3], an augmented cost function ;7 : R" x R" — R that involves an auxiliary variable v € R" in the following form is
proposed

- "1

X, v) = IIAX—b||§+/3;<2(gfx—vf)2+lﬁ(vi)>, (1.9)
where

¢(t)=n1€§l§1{%(t—s)2+w(s)}, Vit €R, (1.10)

and ¢ : R — Ris a prescribed dual potential function that can be determined by using the theory of convex conjugacy,
{v;} are the entries of the vector v. We remark that ¢ is a potential function used as the regularization term in (1.1). The
condition (1.10) ensures that

4(X) = min élv(x, V), Vxe R™ .
VeR
The regularization term involved in i is half-quadratic, which is the reason of the method named. In [1], the minimizer

(%, v) of ¢ is calculated by using alternating minimization. In order to speed up the convergence rate of the method, we may
adopt the Newton-type method to solve (1.9). To this end, we revisit the Hessian of g (x, v), which is given by
2A"A + BG'G —BGT ]

_ |Hii  Hyp (1.11)
—BG B+ Bdiag(y"(vi)) |~ [Hn Hn() |’ :

Here, I represents the identity matrix, and diag(y” (v;)) is a diagonal matrix whose diagonal entries are given by {y/” (v;)}.

H(X, V) = |:

Theorem 1.1 (Theorem 1.1 in [4]). Under the assumptions in (1.8) and (1.2), the Hessian matrix J (X, V) is symmetric positive
definite for all X and v.

Therefore, in each Newton'’s iteration, the Newton equation leads to a structured symmetric positive definite linear
system

H(x,v)d =r. (1.12)

The main contribution of this paper is to speed up the iterative procedure by solving (1.12) using the Preconditioned Conjugate
Gradient (PCG) method with decomposition-based preconditioners such that this kind of structured linear systems can be
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