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a b s t r a c t

This paper is concerned with a class of boundary value problems for nonlinear mixed
impulsive integro-differential equations with deviating arguments. We establish a new
comparison principle and use the method of upper and lower solutions together with the
monotone iterative technique. Under suitable conditions, we obtain the existence results
of extremal solutions for the problems. An example is also given to illustrate our results.
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1. Introduction

Impulsive differential equations have become increasingly important in recent years in somemathematicalmodels of real
processes and phenomena studied in physics, chemical technology, population dynamics, biotechnology, and economics.
There has been a significant development in impulse theory. In particular, there is an increasing interest in the study
of nonlinear mixed integro-differential equations with deviating arguments and multipoint boundary value problems
(BVPs) [1–4] for impulsive differential equations.

In [5], the method of lower and upper solutions combined with the monotone iterative technique and the numerical-
analytic method were applied to study the problem

x′(t) = f

t, x(t),

 T

0
k(s)x(s)ds


t ∈ J = [0, T ]

x(0) = λx(T ) +

 T

0
D(s)x(s)ds + d d ∈ R,

where f ∈ C[J × R2, R], f is non-decreasing with respect to the third variable, k, D ∈ C[J, R+], and λ ≥ 0.
Chen and Shen [6] studied

u′(t) = f (t, u(t), u(θ(t))) t ≠ tk, t ∈ J = [0, T ]

1u(tk) = Ik(u(tk)) k = 1, 2, . . . ,m

u(0) + µ

 T

0
u(s)ds = u(T ),

where f ∈ C[J×R2, R], andµ = 1 or−1, by themethod of upper and lower solutions and themonotone iterative technique.
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Motivated by the above, we are concerned with the following BVPs of nonlinear mixed impulsive integro-differential
equations with deviating arguments:

u′(t) = f (t, u(t), u(α(t)), Tu, Su) t ≠ tk, t ∈ J = [0, T ]

1u(tk) = Ik(u(tk)) k = 1, 2, . . . ,m

u(0) = λ1u(T ) + λ2u(η) + λ3

 T

0
w(s, u(s))ds + k,

(1.1)

where 0 = t0 < t1 < t2 < · · · < tk < · · · < tm < tm+1 = T , Ik ∈ C(R, R), f is continuous everywhere except at
{tk} × R4

; f (t+k , ·, ·, ·, ·) and f (t−k , ·, ·, ·, ·) exist with f (t−k , ·, ·, ·, ·) = f (tk, ·, ·, ·, ·);

(Tu)(t) =

 β(t)

0
k(t, s)u(γ (s))ds, (Su)(t) =

 T

0
h(t, s)u(δ(s))ds,

and 1u(tk) = u(t+k ) − u(t−k ), w ∈ C(J × R, R), 0 ≤ λ1 ≤ 1, 0 ≤ λ2, 0 ≤ λ3, k ∈ R, and 0 ≤ η ≤ T . The assumptions
concerning α, β, γ , δ, k, and hwill be given latter. The boundary conditions in Eq. (1.1) involve several special cases such as
periodic boundary conditions, anti-periodic boundary conditions, integral boundary, and initial problems.
Special cases

(i) If λ1 = 1, λ2 = λ3 = k = 0, then Eq. (1.1) reduces to the periodic boundary value problem (cf. [7–11]).
(ii) If λ2 = 1+λ1, η = 0, and λ3 = k = 0, then Eq. (1.1) reduces to the anti-periodic boundary value problem (cf. [12–15]).
(iii) If λ3 ≠ 0 and λ2 = k = 0, then Eq. (1.1) reduces to the integral boundary value problems which have been studied in

[16–19].
(iv) If λ1 = λ2 = λ3 = 0, then Eq. (1.1) reduces to initial problems (cf. [20,21]).

For example, if λ2 = 1+λ1, η = 0, and λ3 = k = 0, Eq. (1.1) reduces to an anti-periodic boundary value problem, which
was considered by Wang and Zhang in [15]. There, the existence results of quasi-extremal solutions for the anti-periodic
boundary value problemswas obtained by themethod of upper and lower solutions with themonotone iterative technique.
Therefore, we extend some previous results in many respects.

The article is organized as follow. In Section 2, we establish a new comparison principle. In Section 3, by using of the
monotone iterative technique and the method of upper and lower solutions, we obtain the existence results of extremal
solutions for (1.1). In Section 4, we give an example that illustrates our results.

2. Preliminaries and lemmas

Let PC(J) = {x : J → R; x(t) is continuous everywhere except for some tk at which x(t+k ) and x(t−k ) exist and
x(tk) = x(t−k ), k = 1, 2, . . . ,m}; PC1(J) = {x ∈ PC(J) : x′(t) is continuous everywhere except for some tk at which
x′(t+k ) and x′(t−k ) exist and x′(tk) = x′(t−k ), k = 1, 2, . . . ,m}. Let J− = J \ {tk, k = 1, 2, . . . ,m}; PC(J) and PC1(J) are
Banach spaces with the norms ∥x∥PC = sup{|x(t)| : t ∈ J} and ∥x∥PC1 = max{∥x∥PC , ∥x′

∥PC }. x ∈ PC1(J) is called a solution
of BVPs (1.1) if it satisfies Eq. (1.1).

In what follows, we need the following hypotheses.

(H1) α, β, γ , δ ∈ C(J, J),N, K ,H ∈ C(J, R+), k ∈ C(Ω, R+), h ∈ C(J2, R+), R+ = [0, +∞), Ω = {(t, s) ∈ J2 | 0 ≤ s ≤

β(t)},M ∈ C(J, R),
 T
0 M(τ )dτ ≥ 0, and 0 ≤ Lk ≤ 1, 0 < r ≤ 1.

For convenience, we set
N∗(t) = N(t)e

 t
0 M(s)dse−

 α(t)
0 M(s)ds, K ∗(t) = K(t)e

 t
0 M(s)ds,

H∗(t) = H(t)e
 t
0 M(s)ds, k∗(t, s) = k(t, s)e−

 γ (s)
0 M(τ )dτ ,

h∗(t, s) = h(t, s)e−
 δ(s)
0 M(τ )dτ , r∗

= re−
 T
0 M(s)ds,

(2.1)

θ∗(t) = N∗(t) + K ∗(t)
 β(t)
0 k∗(t, s)ds + H∗(t)

 T
0 h∗(t, s)ds ≢ 0 for t ∈ J, µ∗

=
 T
0 θ∗(t)dt .

(H2) 
µ∗

+

m
k=1

Lk


≤ r∗.

Lemma 2.1. Assume that (H1) and (H2) hold, and that q ∈ PC1(J) such thatq′(t) ≤ −M(t)q(t) − (H q)(t) t ≠ tk, t ∈ J = [0, T ]

1q(tk) ≤ −Lk(q(tk)) k = 1, 2, . . . ,m
q(0) ≤ rq(T ),

(2.2)
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