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1. Introduction

Queueing networks with vacations were proposed in the 1970s to overcome the deficiency of classical queueing networks
in modeling complex hi-tech systems [1]. Server vacations may literally mean a lack of work, or figuratively stand for
server failure, server maintenance, or a server taking another assigned job, and hence the introduction of server vacations
makes waiting-line systems more lifelike. The applications of vacation queueing systems lie in various areas such as flexible
manufacturing systems, lane control at border-crossing stations, and data transfer in telecommunication systems. The
thorough development of queueing networks with vacations can be found in survey papers in [2-4], and the monographs
in[1,5].

Homogeneity of service rates is a general assumption in the study of multiserver queueing system, and it ensures that
all servers in the system provide services at an identical rate. However, the hypothesis of homogeneous systems is feasible
only when the service process is mechanically or electronically controlled. In reality, human servers are more likely to
perform the same assignment at different service rates. Therefore heterogeneous servers are introduced and their service
time distributions may be different for different servers. The combination of server vacations and heterogeneous servers is
more practical in real-life situations [6-8].

In [9], Yue et al. proposed an M /M /2 queueing system with one queue and two heterogeneous servers under a variant
vacation policy, in which the two servers will simultaneously take at most J vacations when the system becomes empty. They
carried out a steady-state analysis and obtained the stationary distributions of system size and mean system size. Moreover,
they studied the distribution of the amount of vacations taken, and the conditional stochastic decomposition properties
of the queue length and the waiting time. The analytical results in [9], however, are based on the assumption of infinite
queueing spaces, which may not be practical in general.
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For the sake of practicality, in this paper, we aim to consider the problem with finite queueing spaces and find the
transient solution of the queueing system in [9]. It is well known that the transient solution of a queueing system can be
numerically approximated by discretizing the Kolmogorov backward equation and solving the resulting ordinary differential
equation (ODE) system [10,11]. Classical initial value methods (IVMs) such as Runge-Kutta methods are natural candidates,
but they are computationally more expensive than multistep methods of comparable accuracy. In this work, we follow
the idea in [12] and apply boundary value methods (BVMs) to solve the ODE systems. BVMs are the generalization of
implicit linear multistep formulas (LMFs), and by using those with unconditional stability [13] one can disregard the
restrictions on the step sizes for stability reasons. However, temporal discretization with BVMs requires solutions of
larger linear systems than with Runge-Kutta methods or LMFs used as IVMs. Fortunately, owing to the block tridiagonal
structure of the transition rate matrix, the resulting linear system is sparse, and therefore we can resort to iterative
methods.

Preconditioning techniques have long been used to speed up the convergence process of iterative methods when
solving large sparse linear systems produced by BVMs [14]. Over the years, different preconditioners have been proposed,
including the T. Chan’s circulant preconditioner [15,16], the P-circulant preconditioner [15], the Strang’s circulant
preconditioner [15,17], the skew-circulant preconditioner [18], and recently the Crank-Nicolson (CN) preconditioner
[19,20]. In [20], the CN preconditioner is paired with BVMs for pricing options in the jump-diffusion model, and the
numerical results therein show that the CN preconditioner contributes to smaller computational cost and fewer iterations
than the Strang-type preconditioner. In this paper, we mainly discuss the use of the CN preconditioner because we will see
from the numerical results that it involves cheaper computational cost than other methods.

The rest of the paper is organized as follows. In Section 2, we outline the two-server queueing system and its variant
vacation policy. In Section 3, we briefly introduce the BVMs and apply them to discretize the Kolmogorov backward equation
to obtain an ODE system. In Section 4, we form the CN preconditioner and study some of its properties when used in the
iterative method. In Section 5, we present the numerical results. In Section 6, we give some concluding remarks and ideas
for possible future work.

2. Transient solution for a queueing network with variant vacation policy

In this paper, we consider an M /M /2 queueing system with two heterogeneous servers under the variant vacation policy
proposed in [9]. Customers arrive and join a single queue according to the first-come first-served (FCFS) principle. The
arrival of customers is modeled by a Poisson process with rate A. When the system becomes empty, the two servers will
simultaneously take a vacation of length V, where V is an exponentially distributed variable with parameter 6. When the
servers are back from their vacation, they either resume working immediately if they find at least one customer waiting in
the queue, or leave for another vacation of the same length V. The two servers will only take at most J vacations, and after
that, they will stay active in the system to provide services even when the system becomes empty.

The service rates of the two heterogeneous servers are modeled by exponential distributions with rates uq and u, for
Server 1 and Server 2, respectively. Note that p1 # u,, since the two servers are heterogeneous. When both servers are free
at any moment, Server 1 will step up to serve the newly arriving customer. Finally, all the stochastic processes involved in
the system are assumed to be independent.

It is noted that M/M/2 vacation queueing systems are modeled by quasi-birth-and-death (QBD) processes, the
generalization of the birth-and-death process from a one-dimensional state space to a multidimensional state space [1].
Let X (t) be the number of customers in the system at time t,and let L(t) =j, j = 0, 1, ..., ] + 1 be the status of the servers
at time t. The state (i, j) means that i > 0 customers are in the system and both servers are taking the (j + 1)th vacation for
j=0,1,...,] — 1. Moreover, the state (0, J) means that the system is empty while both servers are free. The state (1, J)
means that one customer is in the system while Server 1 is busy and Server 2 is free. The state (1, ] 4+ 1) means that one
customer is in the system while Server 2 is busy and Server 1 is free. The state (i, J) means that i > 2 customers are in the
system while both servers are busy.

For the two-dimensional Markov process {(X(t), L(t)), t > 0} with the state space
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the infinitesimal generator of the process is given by [9]
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