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a b s t r a c t

In this paper we study the numerical approximation of Turing patterns corresponding
to steady state solutions of a PDE system of reaction–diffusion equations modeling an
electrodeposition process. We apply the Method of Lines (MOL) and describe the semi-
discretization by high order finite differences in space given by the Extended Central
Difference Formulas (ECDFs) that approximate Neumann boundary conditions (BCs) with
the same accuracy. We introduce a test equation to describe the interplay between the
diffusion and the reaction time scales.We present a stability analysis of a selection of time-
integrators (IMEX 2-SBDF method, Crank–Nicolson (CN), Alternating Direction Implicit
(ADI) method) for the test equation as well as for the Schnakenberg model, prototype of
nonlinear reaction–diffusion systems with Turing patterns. Eventually, we apply the ADI-
ECDF schemes to solve the electrodeposition model until the stationary patterns (spots &
worms and only spots) are reached.We validate themodel by comparisonwith experiments
on Cu film growth by electrodeposition.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

[...] Is the discrete world an approximation of the continuous one or is it the other way around? This sentence echoes
another famous one, stated 40 years ago by Eugene Wigner: The miracle of appropriateness of the language of mathematics
for the formulation of laws of physics is a wonderful gift which we neither understand nor deserve [1]. Discrete and continuous
descriptions of a given phenomenon can be, rather crudely, regarded as the expression of the same concept in two different
languages. Nevertheless, there is something unique in both approaches. At least from the mathematical point of view, the
uniqueness of continuous and discrete worlds cannot be entirely captured by the straightforward concepts of analytical
and numerical treatments of equations, respectively. Probably, such uniqueness resides in the modeling choices that are an
aspect of the cognitive reduction of a phenomenon that seems to be unavoidable in order to set up a quantitative treatment.
Of course, this view of discretization has a bearing on both model building and numerical approximations. In fact, in the
contemporary language of mathematics, a special place is occupied by numerical analysis, thanks to the steadily developing
interest for the interplay among abstract formalism, computations and simulation of real world phenomena.

This contribution means to offer an example of such conceptual interplay made possible by the synergy of
advanced materials-science problems with clear-cut technological relevance, well-defined mathematical formulation of
the underlying physics and suitable computational methods. Specifically, the problem we attack in this study is part of a
long-term project dealing with the continuous mathematical modeling of metal growth by electrodeposition (ECD), whose
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previous results are reported in [2–10]. In these studies, we have introduced a reaction–diffusion PDE system, accounting for
the coupling betweenmorphology and surface concentration of one chemical species adsorbed at the surface of the growing
metal. Morphology and surface chemistry have been considered as continuous variables. This system exhibits a surprisingly
rich dynamic scenario, featuring: (i) existence of transition front waves moving with specific wave speeds; (ii) Turing
instability and initiation of spatial patterns driven by diffusion; (iii) smoothing effects related to a forcing sinusoidal term.

In all cases, a numerical discretization for the electrochemical PDE system is needed to gain quantitative information on
the evolution of the solution until its steady state is attained. As far as travelingwave solutions are concerned, in [7] we have
proposed an accurate approximation of the wave profile and of its speed. Concerning the simulation of Turing patterns, in
one [2,4] and two [5,6,8,9] space dimensions, we have used a general-purpose scheme in order tomap the dynamic behavior
and confirm numerically the outcomes of theoretical stability analyses.

Here we propose to extend the numerical method introduced in [11,12] and developed for the approximation of
traveling waves in [7], to deal with Turing patterns. This approach consists in a high order semi-discretization in space
by the Extended Central Difference Formulas (ECDFs). As far as the discretization in time is concerned, we discuss the
appropriateness of selected numerical techniques: the Crank–Nicolson (CN) method, the Implicit–Explicit (IMEX) Semi-
Backward Differentiation Formula of order 2 (2-SBDF) and the Peaceman–Rachford Alternating Direction Implicit (ADI)
scheme. For this purpose, we introduce a linear test reaction–diffusion equation, given by a heat equationwith linear source
term, and define its stability region in terms of reaction and diffusion scales. Then the stability regions for the numerical
methods are derived. This analysis allows to identify stepsize restrictions and to decide which method is best suited. The
results on stepsize restrictions are applied to the Schnakenberg model, prototype of nonlinear reaction–diffusion systems
with Turing patterns (see [13]).

Our study is completed by a comparison of the numerical simulations (discrete results) with experimental data
(continuous observables). Their consistency can be regarded as a factual instance of Donato Trigiante’s tenet that the
qualitative behavior of the solution of the continuous problem and the qualitative behavior of the discrete one must be similar
(see [14, Chapter 1, p.1]).

The paper is organized as follows. In Section 2 we highlight the mathematical model for metal growth by
electrodeposition and the analytical results to guarantee Turing instability and pattern formation. In Section 3 we recall the
ECDF schemes in 1D and their extension in 2D together with some properties about the matrix operator for the derivative
approximations. In the same section, we set up the ODE system arising from the semi-discretization in space by ECDFs ready
for subsequent processing by a time integration method. In Section 4 we present the test reaction–diffusion problem, the
stability analysis for the time integration schemes cited above, their possible stepsize restrictions and numerical results for
the Schnakenbergmodel. In Section 5,we show thenumerical results obtainedby theADI-ECDF schemes of order p = 2, 4 for
the approximation of the Turing patterns for the ECD model and we address also the model validation through comparison
between simulations and experiments.

2. The continuous model

Metal plating is a well-assessed andwidespread technology present in several fields from heritage to nuclear science and
aerospace. In fact, it is ubiquitous in surface treatment technologies and exhibits a wide-range of applications including,
among others: energetics (fuel cells and batteries), chemical and biochemical sensors, electronic fabrication, corrosion
and wear protection, surface nobilitation and decoration, preservation of metallic components. Usually, the functional
and aesthetic quality of metal coatings is achieved on empirical basis. Recently, starting from the paper [2], the present
authors have proposed a tentative rationalization of the above process by introducing a systemof coupled reaction–diffusion
equations for the description andprediction ofmorphogenesis of the electro-deposits at the electrochemical interface during
metal plating at controlled potential. These initial results opened theway to a series of other papers [3–8,10]wherewe focus
on different kinds of continuous solutions giving rise to waves moving with specific speed and pattern formation. In this
system one equation is for the morphology and one for the surface concentration of a key adsorbate. Hence, we describe
the evolution of the electrodeposit surface profile obtained as the solution of a balance equation. The flow terms describe
inflowandoutflowofmaterial contributing to the build-up of themorphology,while the source terms account for generation
(deposition) and loss (corrosion, desorption) of the relevant material. In the rest of this section we review our key results,
leaving out the details, that can be recovered from the original papers.

For the electrokinetic reasons detailed in [6,7], the relevant PDE system of reaction–diffusion equations with zero
Neumann boundary conditions (BCs) for the electrode morphology η(x, y, t) and the surface chemistry coverage θ(x, y, t)
is given on a representative domain Ω = Ωx × Ωy ⊂ R2 by:

∂η

∂τ
= Dη∆η + A

η2

1 + η
− Bηθ, τ > 0

∂θ

∂τ
= Dθ∆θ + (1 − θ)KADS(η, θ) − θKDES(η, θ),

(n · ∇η)|∂Ω = (n · ∇θ)|∂Ω = 0,
η(x, y, 0) = η0(x, y), θ(x, y, 0) = θ0(x, y), (x, y) ∈ Ω

(1)
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