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a b s t r a c t

A numerical scheme is presented for the solution of the compressible Euler equations in
both cylindrical and spherical coordinates. The unstructured grid solver is based on amixed
finite volume/finite element approach. Equivalence conditions linking the node-centered
finite volume and the linear Lagrangian finite element scheme over unstructured grids are
reported and used to devise a common framework for solving the discrete Euler equations
in both the cylindrical and the spherical reference systems. Numerical simulations are
presented for the explosion and implosion problems with spherical symmetry, which are
solved in both the axial–radial cylindrical coordinates and the radial–azimuthal spherical
coordinates. Numerical results are found to be in good agreement with one-dimensional
simulations over a fine mesh.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Diverse compressible flow fields of both industrial and academic interest exhibit relevant cylindrical or spherical
symmetries, as is the case for example for astrophysical flows, nozzle flows, inertial confinement fusion (ICF) applications,
sonoluminescence studies and nuclear explosions [1].

The numerical solution of the flow equations in these cases can be greatly simplified by expressing both the governing
equations and the initial/boundary data within either a cylindrical or a spherical coordinate system. Indeed, it is often
possible to reduce the three-dimensional problem to a simpler two-dimensional or even one-dimensional one, as is the
case for example for cylindrically or spherically symmetric explosions. In the fifties, Goldstine and von Neumann [2] and
Brode [3] used an artificial viscosity approach to solve the one-dimensional Euler equations in spherical coordinates for the
explosion problem. Payne [4] used instead a finite difference approximation. In the seventies, Sod [5] applied for the first
time a solution technique based on Riemann solvers. In 1999, Liu and collaborators [6] used the total variation diminishing
(TVD) technique of Harten [7], in which the numerical scheme is obtained as a suitable combination of a high order scheme
with a low order one to be used close to flow discontinuities.

For multidimensional problems, such as for example axisymmetric problems in which the solution is independent from
the azimuthal coordinate in a cylindrical reference system, additional difficulties arise due to the singularity of the cylindrical
coordinates. In this case, it is standard practice to either approximate the singular terms with ad hoc procedures [8–10] or
resort to complex geometrical calculations of the control volume centroids [11].

In the present paper, a mixed finite volume (FV)/finite element (FE) approach [12] is used to derive a numerical scheme
capable of solving the Euler equations for a compressible fluid in both cylindrical and spherical coordinate systems.
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The combined use of the finite volume and finite element techniques is made possible by the introduction of equivalence
conditions that relate the FV metrics, i.e. cell volumes and integrated normals, to suitably defined FE integrals. Equivalence
conditions relating FV and FE schemes have been derived for Cartesian coordinates in two and three spatial dimensions
[13,14] and for cylindrical coordinates in axially symmetric two-dimensional problems [15]. In both cited references, equiv-
alence conditions are obtained by neglecting higher order FE contributions. Subsequently in [16], equivalence conditions for
the cylindrical coordinates have been derived for the first time without introducing any approximation into the FE discrete
expression for the divergence operator. In [17,18], the spherical coordinate system is also considered and equivalence con-
ditions are derived in this case. In [19] the differences between the consistent scheme and an alternative one violating the
equivalence conditions have been quantified for the case of one-dimensional problems in cylindrical and spherical coordi-
nates. An advantage of the proposed hybrid approach lies in the automatic treatment of the singularities of each reference
system, namely, the axis and the origin in the cylindrical and spherical reference systems, respectively.

In the present paper the consistent formulation is presented in a unifying framework for both the cylindrical and spherical
reference systems. Numerical results for the implosion and the explosion problem are also provided to demonstrate the
correctness of the proposed approach and to compare the two formulations. In Sections 2 and 3 the spatial discretizations
of the scalar equation using FE and FV approaches are presented, in cylindrical and spherical coordinates, respectively,
for a model scalar conservation law. Conditions for equivalence between FE and FV metrics are also shown. In Section 5,
numerical simulations are presented for the implosion and the explosion problem in cylindrical coordinates on the R–θ
and Z–R (axisymmetric) planes and in the spherical coordinates on the r–φ plane. Numerical results are also compared to
one-dimensional simulations. In Section 6 final remarks and comments are given.

2. The node-pair finite volume/element scheme in cylindrical coordinates

The node-pair finite volume/element scheme in cylindrical coordinates is now derived for a scalar conservation law. In
the three-dimensional cylindrical reference system the model equation reads
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+
∂ fZ
∂Z

+
1
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∂R
(RfR) +
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R

∂ fθ
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= 0, (1)

where t is the time, Z, R and θ are the axial, radial and azimuthal coordinates, respectively, u = u(Z, R, θ, t) is the scalar
unknown and f ∅(u) = (fZ , fR, fθ ) is the so-called flux function. A more compact form of the above equation is obtained by
introducing the divergence operator in three-dimensional cylindrical coordinates ∇

∅
·(·) as follows:
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2.1. Node-pair finite element discretization

The scalar conservation law (2) is nowwritten in aweak formbymultiplying it by the radial coordinate R and by a suitable
Lagrangian test function φi ∈ Vh ⊂ H1(Ω). Integrating over the support Ωi of ϕi gives

Ωi

Rϕi
∂u
∂t

dΩ∅
+


Ωi

Rϕi∇
∅
· f ∅(u) dΩ∅
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where N is the set of all nodes of the triangulation. Note that on multiplying by R, the numerical singularity of the
cylindrical reference system is formally removed [15]. In the following, to simplify the notation, the infinitesimal volume
dΩ = R dR dθ dZ is not indicated in the integrals. Integrating by parts immediately gives
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where ∂Ω∂
i = ∂Ωi ∩ ∂Ω , with ∂Ωi and ∂Ω the boundary of Ωi and that of the computational domain Ω , respectively,

and where n∅
i = nZ Ẑ + nRR̂ + nθ θ̂ is the outward versor normal to Ωi. The scalar unknown is now interpolated as

u(Z, R, θ, t) ≃ uh(Z, R, θ, t) =


k∈N uk(t)ϕk(Z, R, θ), to obtain the Bubnov–Galerkin approximation of (1), namely
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where Ni is the set of shape functions ϕk whose support Ωk overlaps Ωi of ϕi and where
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