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a b s t r a c t

This paper addresses new algorithms for constructing weighted cubic splines that are
very effective in interpolation and approximation of sharply changing data. Such spline
interpolations are a useful and efficient tool in computer-aided design when control
of tension on intervals connecting interpolation points is needed. The error bounds for
interpolating weighted splines are obtained. A method for automatic selection of the
weights is presented that permits preservation of the monotonicity and convexity of the
data. The weighted B-spline basis is also well suited for generation of freeform curves, in
the same way as the usual B-splines. By using recurrence relations we derive weighted
B-splines and give a three-point local approximation formula that is exact for first-degree
polynomials. The resulting curves satisfy the convex hull property, they are piecewise
cubics, and the curves can be locally controlled with interval tension in a computationally
efficient manner.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

C2 cubic splines play a very important role in practical methods of spline approximation. However, such splines do
not retain the shape properties of the data, a drawback known as the shape-preserving approximation problem. During the
past few decades, different authors have developed various algorithms of spline approximation with both local and global
shape control. They include exponential, hyperbolic, computationally more efficient rational splines [1–4], etc. The tension
parameters are mainly viewed as an interactive design tool for manipulating the shape of a spline curve. A very detailed
literature review of algorithms for passing a curve through data points so as to preserve the shape of the data is given in [5].

In this paper we consider the weighted cubic splines introduced in [6] (see also [7–12]). Such splines are C1 piecewise
cubic splines where weights are shape parameters. They are a natural generalization of cubic splines, describing from a
physical point of view, an inhomogeneous elastic beam supported at some points. The idea is that the elastic property of the
material is kept piecewise constant, and then it follows by variational arguments that C2 continuity is lost, but is replaced
by known jumps in second derivatives. The theory was steadily developed over years, and nowweighted splines are known
to possess a B-spline basis [10], optimal in a certain sense, and they are Chebyshev splines with sections in appropriate
Extended Complete Chebyshev (ECC)-spaces [13,14].

To treat the weighted splines in a general setting we suggest using the approach of the second author (see
[15–17]) in which such splines are defined as solutions of the differential multipoint boundary value problems. We give
direct algorithms to construct the weighted cubic splines, prove error bounds, and show how to choose weight (tension)
parameters automatically depending on the data monotonicity and convexity. Such algorithms for automatic selection of

∗ Corresponding author. Tel.: +82 10 2739 7364; fax: +82 2888 9298.
E-mail addresses: taewan@snu.ac.kr (T.-w. Kim), kvasovbi@gmail.com (B. Kvasov).
URL: http://caditlab.snu.ac.kr/ (T.-w. Kim).

0377-0427/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2012.04.001

http://dx.doi.org/10.1016/j.cam.2012.04.001
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:taewan@snu.ac.kr
mailto:kvasovbi@gmail.com
http://caditlab.snu.ac.kr/
http://caditlab.snu.ac.kr/
http://caditlab.snu.ac.kr/
http://caditlab.snu.ac.kr/
http://caditlab.snu.ac.kr/
http://dx.doi.org/10.1016/j.cam.2012.04.001


4384 T.-w. Kim, B. Kvasov / Journal of Computational and Applied Mathematics 236 (2012) 4383–4397

the weight parameters are based on the sufficient conditions of monotonicity and convexity for C2 cubic splines [15]. Due
to the simplicity and the reliability of the corresponding algorithms, their use in CAD systems can be considered.

Normalized B-bases present optimal shape preserving properties for the representation of curves when control polygons
are used [18,19]. Rational cubic B-spline bases with point and interval shape control parameters were suggested in [1,2].
The general approach in [20,15] is an alternative which permits to construct different kinds of tension B-splines, including
rational, weighted, etc. This allowed us to give explicit formulas for normalized weighted B-splines in a simpler way than
based on the Bernstein–Bézier representation in [10].

Each weighted B-spline is a non-negative cubic spline that is non-zero only on four intervals. The weighted B-splines
form a partition of unity; that is, they sum to one. Curves generated by summing control points multiplied by the weighted
B-splines have some desirable shape properties, including the local convex hull property. The different weights are built
into the basis functions so that the resulting control point curve is a piecewise cubic with local control of interval tension.
Recurrence formulas for weighted B-splines offer valuable insight into their geometric behavior. Knot insertion algorithms
for weighted B-splines [21,22] produce numerically stable formulas for weighted B-splines.

This paper is divided into eight sections. In Section 2, we define weighted splines and give algorithms for their
construction. Section 3 provides error bounds for weighted splines. In Section 4 a method for adaptive selection of weights
is presented that allows the monotonicity and convexity of the data to be preserved automatically. In Section 5 by using
recurrence relations we construct weighted B-spline basis with tension properties and give a three-point formula for local
approximation. Section 6 uses a weighted B-spline basis to form a control point sum that will yield a curve with the convex
hull property.We concludewith numerical examples of functional and curve interpolation and final comments in Sections 7
and 8.

2. Weighted splines

Suppose that we are given the data

(xi, fi), i = 0, . . . ,N + 1, (1)

where a = x0 < x1 < · · · < xN+1 = b. Define

f [xi, xi+1] = (fi+1 − fi)/hi, hi = xi+1 − xi, i = 0, . . . ,N.

Data (1) are called monotonically increasing if

f [xi, xi+1] ≥ 0, i = 0, . . . ,N,

and are called convex if

f [xi−1, xi, xi+1] ≥ 0, i = 1, . . . ,N.

The shape-preserving interpolation problem consists of constructing a sufficiently smooth function S such that S(xi) = fi
for i = 0, . . . ,N + 1 and S is monotonic and convex on the intervals of monotonicity and convexity of the input data.

The shape-preserving interpolation problem can be very efficiently solved by using weighted splines. Suppose thatw is
a function on [a, b] satisfying 0 < m ≤ w(x) ≤ M for all x ∈ [a, b]. We will callw the weight function.

Definition 1. The weighted spline S is defined as the solution to the differential multipoint boundary value problem
(DMBVP)

d2

dx2


w(x)

d2S
dx2


= 0 for all x ∈ (xi, xi+1), i = 0, . . . ,N, S ∈ Ck

[a, b], k ≥ 1. (2)

Ifw(x) ≡ 1 and k = 2, then we obtain a conventional C2 cubic spline.
In the case whenw is piecewise constant on the subdivision (w(x) ≡ wi for x ∈ [xi, xi+1), i = 0, . . . ,N) S ′′ is a piecewise

linear function and thus S is a piecewise cubic function, but sincew is discontinuous, the solution is only C1 (see [6,8,9,7,10,
11]). The second derivative satisfies the conditions

wi−1S ′′(x−

i ) = wiS ′′(x+

i ), i = 1, . . . ,N. (3)

If we choose w(x) = 1/q(x), where q is a continuous piecewise linear function on a given subdivision, then solution S
will be a piecewise polynomial function of degree 4 belonging to C2. This solution is called a q-spline and is investigated
in [23].

For a more general form of the weight functionw the DMVBP can be solved by using a finite-difference method (see [24,
16,17]). An alternative and perhaps modern view is to refer to weighted cubic splines as to splines with cubic sections
[25,26]. In this paper we shall study in detail the case k = 1 withw being a piecewise constant where the solution is a cubic
spline belonging to C1.

We assume that cubic spline S satisfies the interpolation conditions

S(xi) = fi, i = 0, . . . ,N + 1. (4)
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