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a b s t r a c t

This paper shows the application of generalized finite difference method (GFDM) to the
problem of seismic wave propagation. We investigated stability and star dispersion in 2D.

We obtained independent stability conditions and star dispersion of the phase velocity
for the P and S waves. Also, P and S waves group velocity dispersion have been obtained.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The generalized finite difference method (GFDM) is evolved from classical finite difference method (FDM). GFDM can
be applied over general or irregular clouds of points. The basic idea is to use moving least squares (MLS) approximation
to obtain explicit difference formulae which can be included in partial differential equation to establish, together with an
explicit method, a recursive relationship. The authors have made many contributions to the development of this method
[1–7].

In this paper, this meshless method is applied to seismic wave propagation. Stability conditions and grid dispersion
relations in 2D are derived.

2. Explicit generalized difference schemes for the seismic wave propagation problem for a perfectly elastic,
homogeneous and isotropic medium

2.1. Equation of motion

The equation of motion and Hooke’s law for a perfectly elastic, homogeneous, isotropic medium in 2D are
∂2U(x, y, t)
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with the initial conditions

U(x, y, 0) = f1(x, y); V (x, y, 0) = f2(x, y)
∂U(x, y, 0)

∂t
= f3(x, y);

∂V (x, y, 0)
∂t

= f4(x, y)
(2)

and the boundary condition
a1U(x0, y0, t) + b1

∂U(x0, y0, t)
∂n

= g1(t)

a2V (x0, y0, t) + b2
∂V (x0, y0, t)

∂n
= g2(t)

enΓ (3)

where f1(x, y), f2(x, y), f3(x, y), f4(x, y), g1(t) y g2(t) are known functions,

α =


λ + 2µ

ρ
, β =


µ

ρ

ρ is the density, λ and µ are Lamé elastic coefficients and Γ is the boundary of Ω .

2.2. Explicit generalized difference schemes

The aim is to obtain explicit linear expressions for the approximation of partial derivatives in the points of the domain.
First of all, an irregular grid or cloud of points is generated in the domain Ω ∪ Γ . On defining the central node with a set of
nodes surrounding that node, the star then refers to a group of established nodes in relation to a central node. Every node
in the domain has an associated star assigned to it.

Following [1,3,5–7], the explicit difference formulae for the spatial derivatives are obtained,
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where N is the number of nodes in the star whose central node has the coordinates (x0, y0) (in this work N = 8 and the are
selected by using the four quadrants criteria [1,6]).

m0, η0, ζ0 are the coefficients that multiply the approximate values of the functions U and V at the central node for the
time n1t (un

0 and vn
0 respectively) in the generalized finite difference explicit expressions for the space derivatives.

mj, ηj, ζj are the coefficients that multiply the approximate values of the functions U and V at the rest of the star nodes
for the time n1t (un

j and vn
j respectively) in the generalized finite difference explicit expressions for the space derivatives.

The replacement in Eq. (1) of the explicit expressions obtained for the partial derivatives leads to
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