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a b s t r a c t

This paper investigates the hitting time of a Cox risk process. The relationship between
the hitting time of the Cox risk process and the classical risk process is established and
an explicit expression of the Laplace–Stieltjes transform of the hitting time is derived by
the probabilitymethod. Similarly, we derive the explicit expression of the Laplace–Stieltjes
transform of the last exit time. Further, we study the situation when the intensity process
is an n-state Markov process.
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1. Introduction

Collective risk theory, as the most important theoretical part in actuarial mathematics, mainly deals with stochastic
models arising from the insurance business. We refer the readers to [1,2] for a systematical study of collective risk theory. In
this paper, we consider an important quantity called the first hitting time. The study of the first hitting time for a risk process
is important both in itself and for its applications. For example, [3,4] are two recent reviews concerning game theory where
the topic of risk and exit times, especially with regards to the Markov process is also frequently addressed.

Let (Ω,F , P) be a complete probability space containing all objects defined in the following. Consider a kind of Cox risk
process {U(t), t ≥ 0} introduced in [1]:

U(t) = u + µ(1 + ρ)

 t

0
λ(s)ds −

N(t)
k=1

Zk, t ≥ 0, (1.1)

where u ≥ 0 is the insurer’s initial capital, ρ > 0, Z = {Zk, k ≥ 1} is a sequence of i.i.d. random variables representing the
claim amount, having common distribution function F(x) with density function f (x) and mean value µ. N = {N(t), t ≥ 0}
is a Cox process with intensity process λ = {λ(t), t ≥ 0}.

We call the counting process {N(t)} a Cox process if N(t) = N( t
0 λ(s)ds), whereN = {N(t), t ≥ 0} is a standard Poisson

process with intensity one, λ(t) ≥ 0, P-a.s.,N and λ are independent.
In this paper we assume that N, λ and {Zk, k ≥ 1} are independent of each other. For simplicity, denote c = µ(1 +

ρ), A(t) =
 t
0 λ(s)ds, then (1.1) becomes

U(t) = u + cA(t)−

N(t)
k=1

Zk, t ≥ 0. (1.2)
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Note that A(t) is a non-decreasing process with P-a.s. A(0) = 0, A(t) < ∞ for each t < ∞ and A(∞) = ∞. cA(t) can be
interpreted as the premium income in the time interval [0, t].

When the intensity process {λ(t)} equals a constantΛ, the Cox risk model (1.2) becomes the classical risk model

U(t) = u + cΛt −

N(t)
k=1

Zk, t ≥ 0. (1.3)

In this case, the Cox process N becomes a standard Poisson process with intensityΛ.
In practice it turns out that a Poisson claim arrival process is not realistic. Thus the natural generalization of the classical

riskmodel is amodel whereN becomes a Cox process. Muchwork has been done under this framework, for example [5–11].
These research mainly concentrate their attention on the ruin probability and related problems. In this paper, we consider
other interesting problems, the hitting time and the last exit time for the Cox risk process. For arbitrary level b ≥ u, define
the hitting time of b point to be

Tb =


inf{t > 0,U(t) = b},
∞, if the above set is empty.

For δ > 0, let L(u; b) = E[e−δTb |U(0) = u] be the Laplace–Stieltjes (L–S) transform of Tb.
Define the last exit time (also called quitting time) of zero level to be

σ0 =


sup{t > 0,U(t) = 0},
0, if the above set is empty.

For δ > 0, let Ψ0(u) = E[e−δσ0 |U(0) = u] be the L–S transform of σ0.
It is known that both Tb and σ0 are important quantities in risk theory. For example, the hitting time Tb plays an important

role in dividend problems. The last exit time of zero level σ0 can be used to evaluate the ultimately leaving time of ending
the negative surplus. Gerber and Shiu [12] gave the explicit expression of the L–S transform of the hitting time Tb for the
classical risk process in terms of one root of Lundberg’s fundamental equation. Chiu and Yin [13] studied the L–S transform
of σ0 under the spectrally negative Lévy process framework.

Now we consider the caseΛ = 1, a classical risk model described by {U(t), t ≥ 0}:

U(t) = u + ct −

N(t)
k=1

Zk, t ≥ 0 (1.4)

where c = µ(1 + ρ) and ρ > 0 is the relative safety loading, then P(limt→∞
U(t) = ∞) = 1.

It can be seen from (1.2) and (1.3) that

U(t) = U(A(t)), t ≥ 0.

Thus we have P(limt→∞ U(t) = ∞) = 1.
DenoteTb the hitting time of b point and σ0 the last exit time of zero level for the classical risk process {U(t), t ≥ 0}.

Then we have

A(Tb) = Tb, A(σ0) = σ0. (1.5)

Define the inverse A−1 of A by

A−1(t) = sup{s : A(s) ≤ t}.

The time scale defined by A−1 is generally called the operational time scale. Then

Tb = A−1(Tb), σ0 = A−1(σ0). (1.6)

Our paper is organized as follows. In Section 2, we first give some results for the classical risk model. Since the intensity
measure A(t) plays an important role in the relationship between the Cox risk model and the classical risk model, we derive
the Laplace transform of A−1(t) in this section. Then we can derive an explicit expression for L(u; b) by the probability
method. Using the same method as in Section 3, we derive an explicit expression for Ψ0(u). In Section 4, we study the case
that the intensity process is an n-stateMarkov process. A detailed discussion is given for the two-stateMarkov process.

2. An explicit expression for L(u;b)

In this section, we derive an explicit expression of L(u; b).

2.1. Some results for the classical risk model (1.3)

Wu et al. [14] studiedT0 when u ≥ 0. Now we give some preliminary results forTb.
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