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1. Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively. Let C be a nonempty closed convex
subset of H. Recall that a mapping A : C — H is called a-inverse-strongly monotone if there exists a positive real number «
such that

(Ax — Ay, x —y) > a|Ax — Ay|>, V¥x,y e C.

Let f : C — H be a ¢-contraction; that is, there exists a constant ¢ € [0, 1) such that [|[f (x) — f(¥)| < ¢|lx — y| for all
X,y € C.Recall that a mapping S : C — C is said to be nonexpansive if

S = Syll < lIx =yll, VYx,yeC.

Denote the set of fixed points of S by Fix(S). Let B be a strongly positive bounded linear operator on H, that is, there exists a
constant y > 0 such that

(Bx,x) > yIx|I>, Vx€H.

Let A : C — H be a nonlinear mapping and F : C x C — R be a bifunction. Now we concern the following equilibrium
problem is to find z € C such that

F(z,y) +(Az,y—2z) >0, VyeC. (1.1)
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The solution set of (1.1) is denoted by £2. If A = 0, then (1.1) reduces to the following equilibrium problem of finding z € C
such that

F(z,y) >0, VyeC.
If F = 0, then (1.1) reduces to the variational inequality problem of finding z € C such that
(Az,y —z) =0, VyecC.

Equilibrium problems which were introduced by Blum and Oettli [1] in 1994 have had a great impact and influence in
pure and applied sciences. It has been shown that the equilibrium problems theory provides a novel and unified treatment of
awide class of problems which arise in economics, finance, image reconstruction, ecology, transportation, network, elasticity
and optimization. Equilibrium problems include variational inequalities, fixed point, Nash equilibrium and game theory as
special cases. The equilibrium problems and the variational inequality problems have been investigated by many authors.
Please see [2-32] and the references therein. The problem (1.1) is very general in the sense that it includes, as special cases,
optimization problems, variational inequalities, minimax problems, Nash equilibrium problem in noncooperative games
and others. See, e.g., [1,33-35].

For solving equilibrium problem (1.1), Moudafi [34] introduced an iterative algorithm and proved a weak convergence
theorem. Further, Takahashi and Takahashi [35] introduced another iterative algorithm for finding an element of F(S) N £2
and they obtained a strong convergence result. Ceng and Yao [4] introduced an iterative scheme for finding a common
element of the set of solutions of an equilibrium problem and the set of common fixed points of a finite family of
nonexpansive mappings in a Hilbert space and obtained a strong convergence theorem. Ceng, Schaible and Yao [3]
introduced an implicit iteration scheme with perturbed mapping for equilibrium problems and fixed point problems of
finitely many nonexpansive mappings. Peng and Yao [11] introduced a new hybrid-extragradient method for generalized
equilibrium problems and fixed point problems and variational inequality problems.

Motivated and inspired by the works in this direction in the literature, in this paper, we will study the following
minimization problem

"
min —

1 2
i 2B ) 4 ol — heo), (12)

where i > 0 is some constant, h is a potential function for yf (i.e., h(x) = yf(x), for x € H). This paper introduces two new
algorithms (one implicit and one explicit) that can be used to find the solution of the above minimization problem.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Throughout this paper, we assume that a bifunction
F : C x C — R satisfies the following conditions:
(H1) F(x,x) = 0forallx € C;
(H2) F is monotone, i.e., F(x,y) + F(y,x) < 0forallx,y € C;
(H3) foreachx,y,z € C,limy o F(tz + (1 — D)X, y) < F(x,y);
(H4) foreachx € C,y — F(x, y) is convex and lower semicontinuous.

The metric (or nearest point) projection from H onto C is the mapping P- : H — C which assigns to each point x € C the
unique point Pcx € C satisfying the property

llx — Pex|| = inf |lx — y|| =: d(x, C).
yeC

It is well known that P¢ is a nonexpansive mapping and satisfies

(x —y,Pcx — Pcy) > ||Pcx — Pey|l>, VX, y € H. (2.1)
Moreover, P¢ is characterized by the following properties:

(X — Pcx,y — Pcx) < 0, (2.2)
and

X = I = lIx = Pex||* + Ily — Pex|)?, (2.3)

forallx e Handy € C.
We need the following lemmas for proving our main results.

Lemma 2.1 ([36]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let F : C x C — R be a bifunction which
satisfies conditions (H1)-(H4). Let r > 0 and x € C. Then, there exists z € C such that

1
Fz,y)+-(y—z,z—x) >0, VyeC.
r

Further,if T,(x) ={z € C:F(z,y) + %(y —2z,z—x) > 0, Vy € C}, then the following hold:
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