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a b s t r a c t

We study linear stochastic evolution partial differential equations driven by additive noise.
We present a general and flexible framework for representing the infinite dimensional
Wiener process, which drives the equation. Since the eigenfunctions and eigenvalues of the
covariance operator of the process are usually not available for computations, we propose
an expansion in an arbitrary frame. We show how to obtain error estimates when the
truncated expansion is used in the equation. For the stochastic heat and wave equations,
we combine the truncated expansion with a standard finite element method and derive a
priori bounds for themean square error. Specializing the frame to biorthogonal wavelets in
one variable, we show how the hierarchical structure, support and cancelation properties
of the primal and dual bases lead to near sparsity and can be used to simplify the simulation
of the noise and its update when new terms are added to the expansion.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We study linear stochastic evolution problems of the form

dX(t) = AX(t)dt + BdW (t), t > 0; X(0) = 0, (1.1)

where X(t) is a stochastic process on a probability space (Ω,F , P)with values in a separable Hilbert space H . The operator
A is the infinitesimal generator of a strongly continuous semigroup etA of bounded linear operators onH,W (t) is aQ -Wiener
process on aHilbert spaceU , and B : U → H is a bounded linear operator. The covariance operatorQ ofW (t) is a self-adjoint,
positive semidefinite, bounded linear operator on U .

Under appropriate assumptions, (1.1) has a unique weak solution which is given by the stochastic convolution (see
Section 3.2),

X(t) = WA(t) :=

∫ t

0
e(t−s)ABdW (s).

The motivation for studying the stochastic convolution WA is that this is the first step towards studying more general
evolution problems driven by additive noise of the form

dX(t) = (AX(t)+ f (X(t)))dt + BdW (t), t > 0; X(0) = X0.
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This can be given a rigorous meaning as an integral equation,

X(t) = etAX0 +

∫ t

0
e(t−s)Af (X(s))ds +

∫ t

0
e(t−s)ABdW (s)

= Y (t)+ WA(t),

where Y satisfies

Y ′(t) = AY (t)+ f (Y (t)+ WA(t)), t > 0; Y (0) = X0.

Thus, once WA is known, we may study Y by means of methods for evolution differential equations with random data.
This abstract framework is sufficiently general to include the stochastic heat equation, the stochastic wave equation, and
the stochastic Cahn–Hilliard equation. The above program; that is, splitting the solution of a semilinear problem into the
stochastic convolution and the solution of a random PDE, is carried out, for example, for the stochastic Cahn–Hilliard
equation in [1–3]. The analysis methods forWA and Y are usually quite different, both on the PDE level and on the numerical
level, and the present work is focused on the numerical approximation of the stochastic convolutionWA.

The Q -Wiener process is often represented as an orthogonal series,

W (t) =

∞−
k=1

γ
1/2
k βk(t)fk,

where {γk}
∞

k=1 are the eigenvalues and {fk}∞k=1 an orthonormal basis of eigenvectors of the covariance operatorQ and {βk}
∞

k=1
are independent real-valued Brownianmotions. However, these eigenvectors are not always available for computations.We
therefore propose an expansion in terms of an arbitrary frame which is not related to Q .

Let thus {φj}j∈J , with countable index set J, be a frame for U with corresponding dual frame {φ̃j}j∈J , so that ⟨φj, φ̃j⟩ = δij
and

f =

−
j∈J

⟨f , φ̃j⟩φj, f ∈ U,

see [4]. Let J ⊂ J be a finite set and define a projector PJ by

PJ f :=

−
j∈J

⟨f , φ̃j⟩φj, f ∈ U .

Define the truncated finite dimensional process

W J(t) :=

−
j∈J

⟨W (t), φ̃j⟩φj, t ≥ 0,

and the corresponding stochastic convolution

W J
A(t) :=

∫ t

0
e(t−s)ABdW J(s).

In Theorem 3.2 we prove a formula for the mean square of the truncation error,

E(‖WA(t)− W J
A(t)‖

2) =

∫ t

0
‖esAB(I − PJ)Q 1/2

‖
2
HSds,

which is the basis for our further analysis. Here, ‖T‖HS denotes the Hilbert–Schmidt norm of a bounded linear operator
T :U → H given by

‖T‖
2
HS =

∞−
k=1

‖Tfk‖2 (1.2)

for some and, hence, for any orthonormal basis {fk}∞k=1 of U .
In Section 4 we introduce the deterministic heat and wave equations and their spatial approximation by a standard

Galerkin finite element method. In particular, we consider the elliptic operatorΛu = −∇ · (a∇u)+ cu in a spatial domain
D with boundary condition u = 0 on ∂D as an unbounded linear operator on theHilbert spaceH = L2(D). Its finite element
approximation is denotedΛh.

The stochastic heat equation is then of the form (1.1) with A = −Λ, B = I,H = U = L2(D) and the spatial finite element
discretization leads to the truncated stochastic convolution,

W J
Ah
(t) :=

∫ t

0
e(t−s)AhPhPJdW (s) =

∫ t

0
e−(t−s)ΛhPhPJdW (s),

where Ah = −Λh and Ph is the orthogonal projector onto the finite element function space.
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