

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

A centerless representation of the Virasoro algebra associated with the unitary circular ensemble

Luc Haine*, Didier Vanderstichelen

Department of Mathematics, Université Catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium

ARTICLE INFO

Article history: Received 18 January 2010

MSC: 15A52 17B68

Keywords: Random matrices Virasoro algebra

ABSTRACT

We consider the 2-dimensional Toda lattice tau functions $\tau_n(t, s; \eta, \theta)$ deforming the probabilities $\tau_n(\eta, \theta)$ that a randomly chosen matrix from the unitary group U(n), for the Haar measure, has no eigenvalues within an arc (η, θ) of the unit circle. We show that these tau functions satisfy a centerless Virasoro algebra of constraints, with a boundary part in the sense of Adler, Shiota and van Moerbeke. As an application, we obtain a new derivation of a differential equation due to Tracy and Widom, satisfied by these probabilities, linking it to the Painlevé VI equation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Consider the group U(n) of $n \times n$ unitary matrices, with the normalized Haar measure as a probability measure. The Weyl integral formula gives the induced density distribution on the eigenvalues of the matrices on the unit circle in the complex plane, and is given by

$$\frac{1}{n!} |\Delta_n(z)|^2 \prod_{k=1}^n \frac{dz_k}{2\pi i z_k}; \quad z_k = e^{i\varphi_k} \text{ and } \Delta_n(z) = \prod_{1 \le k < l \le n} (z_k - z_l).$$

Thus, for η , $\theta \in] -\pi$, $\pi[$, with $\eta \leq \theta$, the probability that a randomly chosen matrix from U(n) has no eigenvalues within an arc of circle $(\eta, \theta) = \{z \in S^1 | \eta < \arg(z) < \theta\}$ is given by

$$\tau_n(\eta,\theta) = \frac{1}{(2\pi)^n n!} \int_{\theta}^{2\pi+\eta} \cdots \int_{\theta}^{2\pi+\eta} \prod_{1 \le k < l \le n} |\mathbf{e}^{\mathbf{i}\varphi_k} - \mathbf{e}^{\mathbf{i}\varphi_l}|^2 \mathrm{d}\varphi_1, \dots, \mathrm{d}\varphi_n$$

Obviously, this probability depends only on the length $\theta - \eta$. All of this is well known and we refer the reader to [1] for details. We shall denote by

$$R(\theta) = -\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}\theta} \log \tau_n(-\theta, \theta), \qquad (1.1)$$

the logarithmic derivative of the probability that an arc of circle of length 2θ contains no eigenvalues of a randomly chosen unitary matrix.

* Corresponding author. Tel.: +32 10 47 3162; fax: +32 10 47 2530.

E-mail addresses: luc.haine@uclouvain.be (L. Haine), didier.vanderstichelen@uclouvain.be (D. Vanderstichelen).

^{0377-0427/\$ –} see front matter s 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.cam.2010.06.006

The starting motivation for our work was to understand a differential equation satisfied by the function $R(\theta)$

$$R(\theta)^{2} + 2\sin\theta\cos\theta R(\theta)R'(\theta) + \sin^{2}\theta R'(\theta)^{2}$$

= $\frac{1}{2}\left(\frac{1}{4}\sin^{2}\theta\frac{R''(\theta)^{2}}{R'(\theta)} + \sin\theta\cos\theta R''(\theta) + (\cos^{2}\theta + n^{2}\sin^{2}\theta)R'(\theta)\right),$ (1.2)

obtained in [2], from the point of view of the Adler-Shiota-van Moerbeke [3] approach, in terms of Virasoro constraints. Introducing the 2-Toda time-dependent tau functions

$$\tau_n(t,s;\eta,\theta) = \frac{1}{n!} \int_{[\theta,2\pi+\eta]^n} |\Delta_n(z)|^2 \prod_{k=1}^n \left(e^{\sum_{j=1}^{\infty} (t_j z_k^j + s_j z_k^{-j})} \frac{\mathrm{d}z_k}{2\pi \, \mathrm{i}z_k} \right), \tag{1.3}$$

with $z_k = e^{i\varphi_k}$, deforming the probabilities $\tau_n(\eta, \theta) = \tau_n(0, 0; \eta, \theta)$, we discover that they satisfy a set of Virasoro constraints indexed by *all* integers, decoupling into a boundary-part and a time-part

$$\frac{1}{i}\left(e^{ik\theta}\frac{\partial}{\partial\theta}+e^{ik\eta}\frac{\partial}{\partial\eta}\right)\tau_n(t,s;\eta,\theta)=L_k^{(n)}\tau_n(t,s;\eta,\theta),\quad k\in\mathbb{Z}, i=\sqrt{-1},$$

with the time-dependent operators $L_k^{(n)}$ providing a centerless representation of the *full* Virasoro algebra, see Section 2 (Theorem 2.2) for a precise statement and the proof of the result.

In their study of Painlevé equations satisfied (as functions of x) by integrals of Gessel's type $E_{U(n)}e^{x \operatorname{tr}(M+\overline{M})}$, where the expectation $E_{U(n)}$ refers to integration with respect to the Haar measure over the whole of U(n), Adler and van Moerbeke [4] found the sl_2 subalgebra corresponding to k = -1, 0, 1, without boundary terms. The appearance of boundary terms and of a *full* centerless Virasoro algebra is to the best of our knowledge new. From this result, it is easy to obtain Eq. (1.2), using the algorithmic method of [3]. Finally, similarly to a result by the first author and Semengue [5] on the Jacobi polynomial ensemble, we show that $R(\theta)$ is the restriction to the unit circle of a function r(z) defined in the complex plane, so that $\sigma(z) = -i(z - 1)r(z) - n^2z/4$ satisfies a special case of the Okamoto–Jimbo–Miwa form of the Painlevé VI equation. This will be explained in Section 3 of the paper.

2. A centerless representation of the Virasoro algebra

The proof of the Virasoro constraints satisfied by the integral (1.3) is a non-trivial adaptation of the self-similarity argument exploited in the case of the Gaussian ensembles, based on the invariance of the integrals with respect to translations, see [6] and references therein. Here, we replace translations by appropriate rotations. More precisely, setting

$$dI_n(t,s,z) = |\Delta_n(z)|^2 \prod_{\alpha=1}^n \left(e^{\sum\limits_{j=1}^\infty (t_j z_\alpha^j + s_j z_\alpha^{-j})} \frac{dz_\alpha}{2\pi i z_\alpha} \right),$$
(2.1)

with $z_{\alpha} = e^{i\varphi_{\alpha}}$ and $|\Delta_n(z)|^2 = \prod_{1 \le \alpha < \beta \le n} |z_{\alpha} - z_{\beta}|^2$, we have the fundamental next proposition.

Proposition 2.1. The following variational formulas hold

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}\mathrm{d}I_n\left(z_\alpha\mapsto z_\alpha\mathrm{e}^{\varepsilon(z_\alpha^k-z_\alpha^{-k})}\right)\Big|_{\varepsilon=0} = \left(L_k^{(n)}-L_{-k}^{(n)}\right)\mathrm{d}I_n,\tag{2.2}$$

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}\mathrm{d}I_n\left(z_\alpha\mapsto z_\alpha\mathrm{e}^{\mathrm{i}\varepsilon(z_\alpha^k+z_\alpha^{-k})}\right)\Big|_{\varepsilon=0} = \mathrm{i}\left(L_k^{(n)}+L_{-k}^{(n)}\right)\mathrm{d}I_n,\tag{2.3}$$

for all $k \ge 0$, with

$$L_{k}^{(n)} = \sum_{j=1}^{k-1} \frac{\partial^{2}}{\partial t_{j} \partial t_{k-j}} + n \frac{\partial}{\partial t_{k}} + \sum_{j=1}^{\infty} jt_{j} \frac{\partial}{\partial t_{j+k}} - \sum_{j=k+1}^{\infty} js_{j} \frac{\partial}{\partial s_{j-k}} - \sum_{j=1}^{k-1} js_{j} \frac{\partial}{\partial t_{k-j}} - nks_{k}, \quad k \ge 1,$$

$$(2.4)$$

$$L_0^{(n)} = \sum_{j=1}^{\infty} jt_j \frac{\partial}{\partial t_j} - \sum_{j=1}^{\infty} js_j \frac{\partial}{\partial s_j},$$
(2.5)

$$L_{-k}^{(n)} = -\sum_{j=1}^{k-1} \frac{\partial^2}{\partial s_j \partial s_{k-j}} - n \frac{\partial}{\partial s_k} - \sum_{j=1}^{\infty} j s_j \frac{\partial}{\partial s_{j+k}} + \sum_{j=k+1}^{\infty} j t_j \frac{\partial}{\partial t_{j-k}} + \sum_{j=1}^{k-1} j t_j \frac{\partial}{\partial s_{k-j}} + nkt_k, \quad k \ge 1.$$

$$(2.6)$$

Download English Version:

https://daneshyari.com/en/article/4639747

Download Persian Version:

https://daneshyari.com/article/4639747

Daneshyari.com