

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Estimates for the asymptotic convergence factor of two intervals

Klaus Schiefermayr

Upper Austria University of Applied Sciences, School of Engineering and Environmental Sciences, Stelzhamerstr. 23, 4600 Wels, Austria

ARTICLE INFO

Article history: Received 2 December 2009

MSC: 41A17 33E05 41A29 65F10

Keywords: Estimated asymptotic convergence factor Inequality Jacobian elliptic functions Jacobian theta functions Two intervals

1. Introduction

ABSTRACT

Let *E* be the union of two real intervals not containing zero. Then $L_n^r(E)$ denotes the supremum norm of that polynomial P_n of degree less than or equal to *n*, which is minimal with respect to the supremum norm provided that $P_n(0) = 1$. It is well known that the limit $\kappa(E) := \lim_{n\to\infty} \sqrt[n]{L_n^r(E)}$ exists, where $\kappa(E)$ is called the asymptotic convergence factor, since it plays a crucial role for certain iterative methods solving large-scale matrix problems. The factor $\kappa(E)$ can be expressed with the help of Jacobi's elliptic and theta functions, where this representation is very involved. In this paper, we give precise upper and lower bounds for $\kappa(E)$ in terms of elementary functions of the endpoints of *E*.

© 2011 Published by Elsevier B.V.

For $n \in \mathbb{N}$, let \mathbb{P}_n denote the set of all polynomials of degree at most n with real coefficients. Let E be the union of two real intervals, i.e.

$$E := [a_1, a_2] \cup [a_3, a_4], \quad a_1 < a_2 < a_3 < a_4, \tag{1}$$

and let the supremum norm $\|\cdot\|_E$ associated with *E* be defined by

$$\|P_n\|_E := \max_{x \in E} |P_n(x)| \tag{2}$$

for any polynomial $P_n \in \mathbb{P}_n$. Consider the following two classical approximation problems:

$$L_n(E) := \|T_n(\cdot, E)\|_E := \min\{\|P_n\|_E : P_n \in \mathbb{P}_n \setminus \mathbb{P}_{n-1}, P_n \text{ monic polynomial}\}$$
(3)

and, $0 \notin E$,

$$L_n^r(E,0) := \|R_n(\cdot,E,0)\|_E := \min\{\|P_n\|_E : P_n \in \mathbb{P}_n, P_n(0) = 1\}.$$
(4)

The optimal (monic) polynomial $T_n(x, E) = x^n + \cdots \in \mathbb{P}_n \setminus \mathbb{P}_{n-1}$ in (3) is called the Chebyshev polynomial on E and $L_n(E)$ is called the minimum deviation of $T_n(\cdot, E)$ on E. It is well known that the limit

$$\operatorname{cap} E := \lim_{n \to \infty} \sqrt[n]{L_n(E)}$$
(5)

exists, where cap *E* is called the Chebyshev constant or the logarithmic capacity of *E*. Concerning the general properties of cap *C*, $C \subset \mathbb{C}$ compact, we refer to [1] and [2, Chapter 5].

E-mail address: k.schiefermayr@fh-wels.at.

 $^{0377\}text{-}0427/\$$ – see front matter 0 2011 Published by Elsevier B.V. doi:10.1016/j.cam.2010.06.008

The optimal polynomial $R_n(\cdot, E, 0) \in \mathbb{P}_n$ in (4) is called the *minimal residual polynomial* for the degree n on E and the quantity $L_n^r(E, 0)$ is called the minimum deviation of $R_n(\cdot, E, 0)$ on E. Note that we say for the degree n but not of degree n since the minimal residual polynomial for the degree n on E is a polynomial of degree n or n - 1, see [3]. As above, the limit

$$\kappa(E,0) := \lim_{n \to \infty} \sqrt[n]{L_n'(E,0)}$$
(6)

exists, see, e.g. [4] or [5], where $\kappa(E, 0)$ is usually called the *estimated asymptotic convergence factor*. The approximation problem (4) and the convergence factor (6) arise for instance in the context of solving large-scale matrix problems by Krylov subspace iterations. There is an enormous literature on these subject, hence we would like to mention only three references, the review of Driscoll et al. [5], the book of Fischer [6] and the review of Kuijlaars [4].

In the case of two intervals, both terms, $\kappa(E, 0)$ and cap *E*, can be expressed with the help of Jacobi's elliptic and theta functions and this characterization goes back to the work of Achieser [7]. Since, in both cases, the representation is very involved, it is desirable to have at least estimates of a simpler form. For cap *E*, such estimates are given in [8–10]. In this paper, we will give a precise upper and lower bound for $\kappa(E, 0)$ in terms of elementary functions of the endpoints a_1, a_2, a_3, a_4 of *E*.

The paper is organized as follows. In Section 2, we recall the representations of $\kappa(E, 0)$ and cap *E* with the help of Jacobi's elliptic and theta functions. Using an inequality between a Jacobian theta function and the Jacobian elliptic functions, proved in Section 6, we obtain an upper and a lower bound for $\kappa(E, 0)$ in Section 3, which is the main result of the paper. In Section 4, the following extremum problem is solved: Given the length of the two intervals and the length of the gap between the two intervals, for which set of two intervals the convergence factor $\kappa(E, 0)$ gets minimal? In Section 5, as a byproduct, a new and simple lower bound for cap *E* is derived. Finally, in Section 6, the notion of Jacobi's elliptic and theta functions is recapitulated and several new inequalities, needed in Sections 3 and 4, are proved.

2. Representation of the asymptotic factor and the logarithmic capacity in terms of Jacobi's elliptic functions

Let *E* be given as in (1) such that $0 \notin E$. It is convenient to use the linear transformation

$$\ell(x) := \frac{2x - a_1 - a_4}{a_4 - a_1},\tag{7}$$

which maps the set *E* onto the normed set

$$\hat{E} := [-1, \alpha] \cup [\beta, 1], \tag{8}$$

where $\alpha := \ell(a_2)$ and $\beta := \ell(a_3)$. For the corresponding Chebyshev polynomials, we have

$$T_n(x, E) = \left(\frac{a_4 - a_1}{2}\right)^n T_n(\ell(x), \hat{E}),$$
(9)

thus

$$L_n(E) = \left(\frac{a_4 - a_1}{2}\right)^n L_n(\hat{E})$$
(10)

and

$$\operatorname{cap} E = \frac{a_4 - a_1}{2} \operatorname{cap} \hat{E}.$$
(11)

Concerning the minimal residual polynomial, there is

$$R_n(x, E, 0) = R_n(\ell(x), \hat{E}, \xi),$$
(12)

where $\xi := \ell(0)$, thus

$$L_n^r(\mathcal{E}, \mathbf{0}) = L_n^r(\hat{\mathcal{E}}, \boldsymbol{\xi}) \tag{13}$$

and

$$\kappa(E,0) = \kappa(\hat{E},\xi),\tag{14}$$

for details, see [6, Sec. 3.2].

Let \hat{E} be given as in (8) with $-1 < \alpha < \beta < 1$ and let $\xi \in \mathbb{R} \setminus \hat{E}$. Then there exists a (uniquely determined) Green's function for $\hat{E}^c := \overline{\mathbb{C}} \setminus \hat{E}$ (where $\overline{\mathbb{C}} := \mathbb{C} \cup \infty$) with pole at infinity, denoted by $g(z; \hat{E}^c, \infty)$. The Green's function is defined by the following three properties:

• $g(z; \hat{E}^c, \infty)$ is harmonic in \hat{E}^c .

- $g(z; \hat{E}^{c}, \infty) \log |z|$ is harmonic in a neighbourhood of infinity.
- $g(z; \hat{E}^c, \infty) \to 0$ as $z \to \hat{E}, z \in \hat{E}^c$.

Download English Version:

https://daneshyari.com/en/article/4639748

Download Persian Version:

https://daneshyari.com/article/4639748

Daneshyari.com