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a b s t r a c t

In this paper, we apply the reproducing kernel method to give the exact solution and
approximate solution for the system of the linear Volterra integral equations with variable
coefficients. Some examples are given, showing its effectiveness and convenience. Finally,
the numerical results obtained by the reproducing kernel method are superior to those
obtained by other methods in Farshid Mirzaee (2010) [4], Tahmasbi and Fard (2008) [5],
Saeed and Ahmed (2008) [8].
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1. Introduction

In this paper, we shall apply the reproducing kernel method to the following system of the linear Volterra integral
equations with variable coefficients

a11(x)f1(x) − b11

 x

0
k11(x, t)f1(t)dt + a12(x)f2(x) − b12

 x

0
k12(x, t)f2(t)dt = u1(x)

a21(x)f1(x) − b21

 x

0
k21(x, t)f1(t)dt + a22(x)f2(x) − b22

 x

0
k22(x, t)f2(t)dt = u2(x)

(1)

where a11(x), a12(x), a21(x), a22(x) are arbitrary smooth functions defined on the interval [0, 1], b11, b12, b21, b22 are given
constants. We assume that Eqs. (1) has a unique solution.

The Volterra integral equation arises in many physical applications, such as potential theory and Dirichlet problems,
electrostatics, mathematical problems of radiative equilibrium, the particle transport problems of astrophysics and reactor
theory, and radiative heat transfer problems. Many powerful mathematical methods such as the Galerkin method,
collocationmethod, Taylor series, Legendrewavelets and recently the homotopyperturbationmethod, power seriesmethod,
Adomain’s method and others [1–8] have been proposed to obtain exact and approximate solutions for solving the linear
Volterra integral equations system. The application of reproducing kernel method in linear and nonlinear problems has
been developed by many researchers, because this method is easy to obtain the exact solution with the series form and get
approximate solution with higher precision [9–17]. Now, this method will be used to deal with the system of linear Volterra
integral equations with variable coefficients. In particular, this method can be extended to obtain an approximate solution
and also an exact solution of a system of higher-order linear integral equations.
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2. The reproducing kernel method

In this paper, we shall give the exact solution and approximate solution of Eqs. (1) in the reproducing kernel space. We
assume that Eqs. (1) have the unique solution.

To deal with the system, we consider Eqs. (1) as

U(x) = VF(x) (2)

where operator

V =


v11 v12
v21 v22


:W [0, 1] ⊕ W [0, 1] → W1[0, 1] ⊕ W1[0, 1]

(vijfj)(x) = aij(x)fj(x) − bij

 x

0
kij(x, t)fj(t)dt i, j = 1, 2.

(3)

U(x) =


u1(x)
u2(x)


∈ W1[0, 1] ⊕ W1[0, 1]

F(x) =


f1(x)
f2(x)


∈ W [0, 1] ⊕ W [0, 1].

(4)

2.1. The spaces needed in the paper

• The inner product spaceW [0, 1] ⊕ W [0, 1] is defined as

W [0, 1] ⊕ W [0, 1] =

F(x) = (f1(x), f2(x))T

 f1(x), f2(x) ∈ W [0, 1]

.

The inner product and norm are defined by

⟨F(x),G(x)⟩ =

2
i=1

(fi(x), gi(x))W , F(x),G(x) ∈ W [0, 1] ⊕ W [0, 1]

∥F(x)∥2
=

2
i=1

∥fi(x)∥2
W , F(x) ∈ W [0, 1]. (5)

It is easy to verify that W [0, 1] ⊕ W [0, 1] is a Hilbert space in the sense of the definition of inner product (5). Also,
W1[0, 1] ⊕ W1[0, 1] is a Hilbert space in a similar manner.

• The spaceW1[0, 1] (see [16]) is defined by
W1[0, 1] = {f (x)|f (x) is an absolute continuous real-valued function on the interval [0, 1] and f ′(x) ∈ L2[0, 1]}.

It is equipped with the inner product

(f (x), g(x))W1 = f (0)g(0) +

 1

0
f ′(x)g ′(x)dx, f (x), g(x) ∈ W1

and the norm ∥f ∥W1 =


(f , f )W1 , f (x) ∈ W1.

Theorem 2.1. The space W1[0, 1] is a reproducing kernel space with the reproducing kernel function

r(x, y) =


1 + y, y ≤ x
1 + x, y > x.

(6)

That is, for every x ∈ [0, 1] and f (x) ∈ W1[0, 1], it follows that

(f (x), r(x, y))W1
= f (y).

• The spaceW [0, 1] (see [16]) is defined by

W [0, 1] = {f (x)|f ′(x) is an absolute continuous real-valued function on the interval [0, 1] and f ′′(x) ∈ L2[0, 1]}.
It is equipped with the inner product

(f (x), g(x))W = f (0)g(0) + f ′(0)g ′(0) +

 1

0
f ′′(x)g ′′(x)dx, f (x), g(x) ∈ W

and the norm ∥f ∥W =
√

(f , f )W , f (x) ∈ W .
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