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a b s t r a c t

We have computed point sets with maximal absolute value of the Vandermonde
determinant (Fekete points) orminimal Lebesgue constant (Lebesgue points) on three basic
bidimensional compact sets: the simplex, the square, and the disk. Using routines of the
Matlab Optimization Toolbox, we have obtained some of the best bivariate interpolation
sets known so far.
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1. Introduction

An important and challenging topic of approximation theory is to provide, for a fixed degree n, good point sets ξ for
polynomial interpolation over multivariate compact domains K ⊂ Rd. Given a basis {φj} of the finite dimensional vector
space Pd

n of d-variate polynomials of degree not greater than n, a first issue consists in finding ξ = {ξ1, . . . , ξN} that are
unisolvent, i.e., the cardinality N of ξ is equal to the dimension of Pd

n and det(Vn(ξ)) ≠ 0, where

Vn(ξ) = [vij] = [φj(ξi)], 1 ≤ i, j ≤ N = dim(Pd
n) (1)

is the Vandermondematrix. It is well-known that if K is a bounded interval [a, b], then any set ofN = n+1 distinct points of
K is unisolvent, but the problem is much more difficult for multivariate settings (cf., e.g., [1]). Moreover, as it has been clear
since the discovery of the Runge phenomenon, unisolvence does not ensure that the set has good interpolation properties.
From this point of view, one searches for unisolvent sets ξ = {ξi} with low Lebesgue constant

Λn(ξ) = max
x∈K

N
i=1

|ℓi(x)| (2)

where

ℓi(x) =
Vn(ξ1, . . . , ξi−1, x, ξi+1, . . . , ξN)

Vn(ξ1, . . . , ξN)
(3)

is the i-th Lagrange polynomial w.r.t. the points ξ . It is not difficult to see that for any continuous function f in the compact
domain K

∥f − Inf ∥∞ ≤ (1 + Λn(ξ))∥f − f ∗

n ∥∞ (4)
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where Inf is the polynomial that interpolates f in ξ and f ∗
n ∈ Pn is the polynomial of best approximation to f in the∞-norm.

The sets ξ with minimal Λn(ξ) are known as Lebesgue points. From (4), it stems that low Lebesgue constants Λn(ξ) provide
sets whose interpolation error ∥f − Inf ∥∞ is expected to be as close as possible to that of the best interpolant ∥f − f ∗

n ∥∞.
In general, it is not easy to find these sets theoretically (Lebesgue points are not known even for the interval [2]). On the
other hand, the so called Fekete points, i.e., those sets ξ maximizing the absolute value of the Vandermonde determinant
(w.r.t. any polynomial basis), possess Lebesgue constants growing at most as the dimension N of the polynomial space
Pn since ∥ℓi∥∞ = 1 by construction (but in practice can perform much better). They are analytically known only in few
cases: the interval (Legendre–Gauss–Lobatto points) where Λn = O(log n), the complex circle (equispaced points) where
again Λn = O(log n), and the cube (tensor-product of Legendre–Gauss–Lobatto points) for tensorial interpolation where
Λn = O(logd n); cf. [3,4].

Notice that, whereas the existence of Fekete points for a given compact set K is trivial, since det(Vn(ξ)) is a polynomial in
ξ ∈ KN , the problem is more subtle concerning Lebesgue points. Indeed, the Lebesgue constant Λn(ξ) is not continuous on
the whole KN , since the denominator of the Lagrange polynomials vanishes on a subset of KN which is an algebraic variety.
Nevertheless, ifK is polynomial determining, that is polynomials vanishing there vanish everywhere (this is true for example
whenever K has internal points), such is KN and thus there are points in KN where det(Vn(ξ)) does not vanish. The Lebesgue
constant is then positive, goes to infinity at the variety, and is continuous in the rest of KN . By a suitable redefinition on the
variety, the Lebesgue constant becomes lower-semicontinuous and thus has a global minimum on the compact KN , that is
taken at Lebesgue points (which, as Fekete points, are not unique, in general).

Computing Fekete and Lebesgue points requires solving a large-scale nonlinear optimization problem. Indeed, the
number of variables (that are the coordinates of the optimal points) is 2N , with N = dim(Pd

n). In dimension d = 2, for
example,wedealwith 2×66 = 122 variables already at degreen = 10. In order to provide a cheapnumerical approximation
of Fekete points, recently Approximate Fekete Points and Discrete Leja Points have been introduced, cf. [5–7]. Though they are
not optimal, the absolute values of their Vandermonde determinants are significantly high and the computation requires
only basic linear algebra routines (QR and LU factorizations of Vandermonde matrices). Furthermore, they provide good
interpolation sets on rather general compact domains, and can be used, as is done in the present work, as starting guess for
more sophisticated optimization procedures.

The main purpose of this paper is to provide Fekete and Lebesgue points on three basic bidimensional compact sets, the
simplex, the square, and the disk, by solving numerically the corresponding large-scale nonlinear optimization problems up
to degreen = 18. Once suchpoints have been computed in one reference set, they can beused on any triangle, parallelogram,
and ellipse, by affine mapping. The results of our computational work reach and often improve those previously known. The
interpolation sets and theMatlab codes are available at the webpage [8]. The codes can be easily extended to other domains,
for instance simple polygons. In the case of the simplex, due to their relevance in developing spectral andhigh-ordermethods
for PDEswe have also computed interpolation sets that have an assigned distribution on the sides (Legendre–Gauss–Lobatto
side nodes), which appear to be better than those provided in [9,10]. Concerning the square, besides Fekete and Lebesgue
points, we have computed some new sets that generalize the Padua points [11] and improve their already good quality. Very
little seems to be known about Fekete and Lebesgue points for the disk (cf., e.g., [12]), and we hope that our computational
results could put some insight into this topic.

2. Computational aspects

For computing almost optimal points, the Matlab Optimization Toolbox (cf. [13]) is particularly appealing since we can
determine the desired point sets by methods that are considered state of the art. This numerical environment provides
three built-in routines,fmincon for constrainedminimization andfminsearch,fminunc for unconstrained optimization.
Their usage is straightforward, one has only to provide the target function F to minimize, and a good starting guess. Each
of these routines computes (approximately) the minimum of F . The optimization algorithms have default options to free
the user from the burden of deciding some specific parameters as the size of the derivatives, the number of iterations, . . . .
However, we experienced that these settings were not fully tailored to our purposes. For this reason, beyond MaxIter
and MatFunEvals that determine the maximum number of iterations and of function evaluations, after several trials and
numerical experiments, it has been important to put RelLineSrchBnd and DiffMaxChange equal to 10−3. With such
modifications, the methods that were erratic or too static achieved a better numerical behavior.

In the present context, for a given set of points ξ ⊂ K , we will consider as target functions the numerically evaluated
Lebesgue constant and the absolute value of the determinant of Vn(ξ), where the latter is the Vandermonde matrix of
degree n w.r.t. a certain polynomial basis. We point out that the sets that we obtain are not the true Fekete or Lebesgue
points, but that they share with them low Lebesgue constants and high (relative to the given polynomial basis) absolute
values of det(Vn(ξ)).

In order to compute the Lebesgue constant Λn(ξ) of a particular point set ξ = {ξi}, usually one fixes a fine reference
mesh X ⊂ K and evaluates the Lebesgue function

λn(x; ξ) =

N
i=1

|ℓi(x)|, x ∈ X . (5)
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