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a b s t r a c t

We investigate several existing interface procedures for finite difference methods applied
to advection–diffusion problems. The accuracy, stiffness and reflecting properties of
various interface procedures are investigated.

The analysis and numerical experiments show that there are only minor differences
between various methods once a proper parameter choice has been made.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The conventional multi-block methodology for structured meshes is often, for efficiency and ease of mesh generation,
used in computational physics (see [1–7]). A stable and accurate coupling at the block interfaces is therefore of utmost
importance. However, there are many potential traps and possibilities for failure. Instabilities introduced at the block
boundaries or interfaces are often handled by adding artificial dissipation. When advection is the dominant transport
process, excessive amounts can easily reduce the accuracy. The artificial interfaces will also inevitably introduce numerical
reflections, and care must be taken to minimize them. Another third important aspect when constructing interface
procedures is to minimize the potential additional stiffness due to a large spectral radius.

The development of numerical schemes that overcome the problemsmentioned above is an ongoing challenge, especially
for high order finite differencemethods. Strictly stable and accurate high order finite differencemethods for both hyperbolic,
parabolic and incompletely parabolic problems were derived in [8–15]. These methods employ the so-called Summation-
by-Parts (SBP) operators and the Simultaneous Approximation Term (SAT) procedure for imposing boundary conditions;
see [16,8,11,17,15,18]. With well-posed boundary conditions for the continuous problem, SBP operators and the SAT
procedure, it is straightforward to prove stability using the energy-method. The methods discussed above have been
implemented and tested in realistic flow calculations; see [19–22].

In [8,12] various versions of the SATmethod inmultiple domainswere presented. Thatworkwas continued in [23]where
the theoretical properties of interface procedures were investigated in detail. Themain focus in [23] was on the stability and
formal accuracy properties of the various schemes. We continue this investigation and focus on the stiffness and reflecting
properties of different interface treatments. For clarity,we follow the path in [23], and consider one-dimensional problems in
this paper. However, the SAT formulation can easily be extended to several space dimensions and to complicated boundary
conditions (see [12,13,24,14,19–21]). Examples of other types of hybrid methods and approaches can be found in [25–31].

In Section 2,wederive conditions forwell-posedness of the continuous advection–diffusion problem. Section 3 dealswith
the various semi-discrete multiple domain problems. We present the formulations and give a short theoretical overview of
the existing stability theory. The size and location of the eigenvalues for both the continuous and discrete problems are
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considered in Section 4. In Section 5, we perform numerical experiments and compare the different interface procedures.
We present both one- and two-dimensional calculations. Conclusions are drawn in Section 6.

2. The continuous problem

Consider the advection–diffusion problem in one space dimension,

ut + aux = εuxx + F , 0 ≤ x ≤ 1, t > 0, (1a)

αu(0, t) + βux(0, t) = gL(t), t ≥ 0, (1b)

γ u(1, t) + δux(1, t) = gR(t), t ≥ 0, (1c)

u(x, 0) = f (x), 0 ≤ x ≤ 1, (1d)

where a, ε > 0 and ε ≪ a. In most cases we use F = 0 and we limit ourself to Robin boundary conditions with β, δ ≠ 0.
The functions F , gL, gR and f are the data of the problem.

Remark. When the solution can be estimated in terms of all types of data, the problem (1) is called strongly well posed,
see [32] for more details.

Let the inner product for real valued functions a, b ∈ L2[0, 1] be defined by (a, b) =
 1
0 ab dx and the corresponding

norm by ‖a‖2
= (a, a). The energy method applied to (1) with F = 0 yields
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Hence an energy estimate is obtained if

a +
2α
β

ε < 0 and a +
2γ
δ

ε > 0. (3)

Remark. With the choice (3), the last two terms in (2) are positive but bounded since they contain only boundary data.

We have proved the following proposition.

Proposition 2.1. With condition (3) satisfied, the problem (1) is strongly well posed.

3. The semi-discrete problem

In this section we give a short theoretical overview of the existing stability theory for interface procedures. Most of the
material, in scattered form, can be found in [8,12,23,21,33–35] but is summarized here for completeness. Section 3.1 deals
with the single domain problem and the general SBP–SAT theory while Section 3.2 deals with the specifics related to the
multiple domain problem.

3.1. Single domain in one-dimension

Consider the problem (1) discretized on the single domain [0, 1] with a uniform mesh of (N + 1) points. The vector
u = [u0, u1, . . . , uN ] is the discrete approximation of u. The discrete approximation of u at the grid point i is denoted ui. ux
and uxx are the approximations of ux and uxx, respectively. By using the SBP operators constructed in [9,15] we have

ux = D1u = P−1Qu,

uxx = D2nu = D1(D1u) =

P−1Q

2u, or

uxx = D2cu = P−1(−A + BS)u,

(4)

where A is a matrix with that satisfies A+AT
≥ 0. P is a symmetric positive definite matrix. Q is an almost skew-symmetric

matrix that satisfies

Q + Q T
= B = diag([−1, 0, . . . , 0, 1]). (5)
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