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a b s t r a c t

As a piecewise polynomial with a certain smoothness, the spline plays an important
role in computational geometry. The algebraic variety is the most important subject in
classical algebraic geometry. As the zero set ofmultivariate splines, the piecewise algebraic
variety is a generalization of the algebraic variety. In this paper, the correspondence
between piecewise algebraic varieties and spline ideals is discussed. Furthermore, Hilbert’s
Nullstellensatz for the piecewise algebraic variety is also studied.
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1. Introduction

It is well known that, according to the classical Weierstrass theorem, any continuous function can be uniformly
approximated by polynomials on a bounded domain. Therefore polynomials play an important role in approximation
theory [1]. Unfortunately, the global property of polynomials is so strong that a polynomial can be determined solely by
its properties on a neighborhood of a given point in the domain. However, splines, as piecewise polynomials, can be used to
approximate any continuous, smooth, and even discontinuous functionwithin any given tolerance [2]. Moreover, splines are
easy to store, to evaluate, and tomanipulate on digital computers. Splines have become fundamental tools of computational
geometry, geometric modeling, numerical analysis, approximation theory, optimization, etc. [3–7,2]. Of central importance,
perhaps, are univariate B-splines (or basic splines) first studied in some detail by Schoenberg in 1946 [8].

In 1975, Wang [5] pioneered the use of algebraic geometry in studying the theory of multivariate splines and discovered
the fundamental theorem (Theorem 2.1) of multivariate splines, called the smoothing cofactor-conformality method. In a
series of papers [9–12], Billera and Rose used the methods of homological and commutative algebra to study the algebraic
properties and dimension of multivariate spline space, and the approach was further developed by Stiller, Schenck and
Stillman [13–17]. Recently, Plaumann [4] studied the positivity of C0 splines over a simplicial complex with the potential
for application in optimization.

The algebraic variety, as the most important subject in classical algebraic geometry [18–21], is defined to be the
intersections of hypersurfaces represented by multivariate polynomials. Because the objects are mainly represented by
piecewise polynomials (splines), the piecewise algebraic variety defined as the intersection of surfaces represented by
multivariate splines is a new topic in algebraic geometry and computational geometry. Moreover, studying the algebraic
and geometric properties of the piecewise algebraic varieties is also important both in theory and in practice. For the recent
researches on piecewise algebraic varieties, we refer the reader to [2,22–31].

The purpose of this paper is to introduce the basic algebro-geometric properties of spline ideals and piecewise algebraic
varieties. In Section 2, we recall the smoothing cofactor-conformality method and some algebraic properties of multivariate
splines. Next, piecewise algebraic varieties are presented in Section 3, followed by spline ideals and their properties in
Section 4. Finally, the correspondence between piecewise algebraic varieties and spline ideals is studied in Section 5. Finally,
we conclude the paper in Section 6.
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2. Multivariate spline space

Let An
:= {(a1, . . . , an)|ai ∈ k, i = 1, . . . , n} be an n-dimensional affine space over an algebraically closed field k, and

D ⊂ An be a simply connected domain. A finite number of hyperplanes can be used to form a partition ∆ on D ⊂ An. Then D
is divided into a finite number of cells, δ1, . . . , δT . The boundary of each cell is called the face of∆. Without loss of generality,
we assume that D is a polyhedron in kn. This means that ∆ is a pure, hereditary polyhedral complex [32] and its cells are
facets of ∆. The (n − 1)-dimensional faces of ∆, S1, . . . , SE , are called the edges. Let li = 0 be the equation of the affine
hyperplane containing Si. The zero-dimensional faces, V1, . . . , VQ , are called vertices of ∆. If the face lies on the boundary of
D, then it is called the boundary face; otherwise it is called an interior face.

Denote by Pd(∆) the collection of piecewise polynomials of degree at most d

Pd(∆) := {p|pi = p|δi ∈ Pd, i = 1, 2, . . . , T },

where Pd is the space of n-variable polynomials of degree at most d. For an integer 0 ≤ µ < d, we say that

Sµ

d (∆) := {s|s ∈ Cµ(D) ∩ Pd(∆)}

is amultivariate spline spacewith smoothnessµ and total degree d over∆. By using Bezout’s theorem in algebraic geometry,
Wang [5] discovered the following fundamental theorem on multivariate splines (for convenience, we consider bivariate
spline space here).

Theorem 2.1 ([5]). s ∈ Sµ

d (∆) if and only if the following conditions are satisfied:
(1) For each interior edge of ∆, which is defined by Si : li = 0, there exists the so-called smoothing cofactor qi such that

si1 − si2 = lµ+1
i qi,

where the polynomials si1, si2 are determined by the restriction of s on the two cells δi1 and δi2 with Si as the common edge
and qi ∈ Pα−(µ+1), α = max{deg(si1), deg(si2)}.

(2) For any interior vertex Vj of ∆, the following conformality conditions are satisfied−
[l(j)i ]

µ+1q(j)
i ≡ 0,

where the sum runs over all the interior edges S(j)
i : l(j)i = 0 passing through Vj, and the signs of the smoothing cofactors q(j)

i

are fixed in such a way that when a point crosses S(j)
j from δi2 to δi1, it goes around Vj in a counterclockwise manner.

More details about theory of multivariate splines using the smoothing cofactor-conformality method can be found in
[5–7]. Billera andRose [9–12,33] extended thismethod byusing homological and commutative algebra to study the algebraic
properties and dimension of Sµ

d (∆), and the approach was further developed by Stiller, Schenck and Stillman [13–17].
The space

Sµ(∆) = {s|s ∈ Cµ(D) ∩ P(∆)}

is called the multivariate spline space with smoothness µ over ∆, where P(∆) is the collection of piecewise polynomials
over ∆. Obviously, Sµ

d (∆) is the subset of s ∈ Sµ(∆) such that the restriction of s to each cell in ∆ is a polynomial of degree
d or less. In fact, Sµ(∆) is a Nötherian ring [7,2]. Obviously, the polynomial ring k[x1, . . . , xn] is a subset of Sµ(∆), and it is
a proper subset if partition ∆ is generic.

Suppose that

Bµ(∆) =


(g1, . . . , gE)|

−
δ∈c

gδ l
µ+1
δ = 0, ∀c ∈ C, gi ∈ k[x1, . . . , xn], i = 1, . . . , E


,

whereC denotes the set of cycles in thedual graphG∆ of∆. [32,33] presented the following algebraicmeaning of Theorem2.1
by considering a module Bµ(∆) built out of syzygies on the lµ+1

i .

Theorem 2.2 ([32,33]).
(1) Sµ(∆) has the structure of a module over the ring k[x1, . . . , xn].
(2) Sµ

d (∆) is a finite-dimensional vector subspace of Sµ(∆).
(3) Sµ(∆) is isomorphic to Bµ(∆)


k[x1, . . . , xn] as a k[x1, . . . , xn]-module.

(4) If G∆ is a tree (i.e., a connected graph with no cycles), then Sµ(∆) is a free module for all µ ≥ 0.

For each i, 1 ≤ i ≤ Q , there is a unique function Xi ∈ S01(∆) such that

Xi(Vj) =


1, i = j,
0, i ≠ j.

The Xi are called Courant functions of ∆. The face ring of ∆, denoted as k[∆], is defined as the quotient ring k[∆] =

k[x1, . . . , xn]/I∆, where I∆ is the ideal generated by square-free monomials not supported by faces of∆. Billera [10] showed
that in fact S0(∆) equals the algebra generated by the Courant functions over k.
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