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a b s t r a c t

In this paper, we first investigate the invertibility of a class of matrices. Based on the
obtained results, we then discuss the solvability of Newton equations appearing in the
smoothing-type algorithm for solving the second-order cone complementarity problem
(SOCCP). A condition ensuring the solvability of such a system of Newton equations is
given. In addition, our results also show that the assumption that the Jacobian matrix of
the function involved in the SOCCP is a P0-matrix is not enough for ensuring the solvability
of such a system of Newton equations, which is different from the one of smoothing-type
algorithms for solving many traditional optimization problems in ℜ

n.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that many optimization problems can be reformulated as a system of parameterized smooth equations.
Instead of solving the original problem, one solves the parameterized equations by some Newton-type method that
iteratively finds a solution of the smooth equations while gradually reducing the smoothing parameter to zero so that a
solution of the original problem can be found. This is the so-called smoothing-type algorithm, which has been successfully
applied to various optimization problems (see, for example, [1–12]). In order to ensure the well-definedness of some
smoothing-type algorithm, it is fundamental to ensure the solvability of Newton equations appearing in the smoothing-
type algorithm.

In the smoothing-type algorithm for many optimization problems in ℜ
n, the solvability of Newton equations is usually

determined by the invertibility of the matrix of the form

N̄ =


M −I
X Y


,

where M, I, X, Y ∈ ℜ
n×n, I is the identity matrix, and both X and Y are positive diagonal matrices. Kojima et al. showed

in [13, Lemma 4.1] that N̄ is invertible if and only if M is a P0-matrix (i.e., for every 0 ≠ x ∈ ℜ
n, there exists an xk ≠ 0

such that xk(Mx)k ≥ 0). Such a result plays an important role in some algorithms for solving many optimization problems
in ℜ

n, such as smoothing-type algorithms for solving complementarity problems (CPs) [1–3,5] and variational inequality
problems (VIPs) [6–9].
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The second-order cone complementarity problem (SCCCP) is to find an x = (x1, x2) ∈ ℜ × ℜ
n−1 such that

x ≽ 0, f (x) + q ≽ 0, ⟨x, f (x) + q⟩ = 0, (1.1)

where ⟨·, ·⟩ is the Euclidean inner product, f : ℜ
n

→ ℜ
n, and ≽ is a partial order induced by

K := Kn1 × Kn2 × · · · × Knm (1.2)

(i.e., x ≽ 0 means x ∈ K . Similarly, x ≻ 0 means x ∈ int K , the interior of K), where integers m ≥ 0, n1, . . . , nm ≥ 0,
n1 + · · · + nm = n, and every Kni is a second-order cone defined by Kni := {(x1, x2) ∈ ℜ × ℜ

ni−1
: ‖x2‖ ≤ x1} with ‖ · ‖

denoting the Euclidean norm. The SOCCP has been studied extensively in the literature (see, for example, [14–19]). In this
paper, unless stated otherwise, we assume that K = Kn. We shall show that, in smoothing-type algorithms for the SOCCP,
the solvability of Newton equations is determined by the invertibility of the matrix in the form of

N :=


M −I
X Y


, (1.3)

where I is the identity matrix,M is the Fréchet derivative of f at x, and (X, Y ) ∈ Ω1 with Ω1 being defined by

Ω1 :=


(X, Y ) ∈ ℜ

n×n
× ℜ

n×n
X, Y are two symmetric positive
definite matrices and XY = YX


. (1.4)

Thus, it is necessary to investigate the invertibility of the matrix N defined by (1.3) in order to develop smoothing-type
algorithms to solve the SOCCP. A natural question is whether the result on the invertibility of the matrix Ñ can be extended to
the matrix N or not? If not, which condition for M can ensure that the matrix N defined by (1.3) with (X, Y ) ∈ Ω1 is invertible?

In this paper, we show that N is invertible for any (X, Y ) ∈ Ω1 if and only ifM ∈ Ω2 where Ω2 is defined by

Ω2 := {M ∈ ℜ
n×n

: QMQ T is a P0-matrix for any orthogonal matrix Q }, (1.5)

and that M ∈ Ω2 if and only if M is a positive semidefinite matrix. As mentioned above, we shall show that the solvability
of Newton equations is determined by the invertibility of the matrix in the form of N defined by (1.3). In particular, such a
system of Newton equations is solvable if M is positive semidefinite. Our results also show that the assumption that M is a
P0-matrix is not enough to ensure the solvability of such a system of Newton equations, which is different from the one of
the existing smoothing-type algorithms for solving many optimization problems in ℜ

n.
The rest of this paper is organized as follows. In Section 2, we show that a matrix belongs to Ω2 defined by (1.5) if and

only if such a matrix is a positive semidefinite matrix, and discuss the invertibility of the matrix N with (X, Y ) ∈ Ω1. In
Section 3, we discuss the solvability of Newton equations appearing in the smoothing-type algorithm for the SOCCP. Some
remarks are also given in this section.

In our notation, all vectors are column vectors, I := {1, 2, . . . , n}, the superscript T denotes transpose, ℜn denotes the
space of n-dimensional real column vectors, ℜn×n denotes the space of n × n real matrices, and Df (x) denotes the Fréchet
derivative of f (·) : ℜ

n
→ ℜ

n at x. For any vectors u, v ∈ ℜ
n, we denote by ui the ith component of u, and write (uT , vT )T as

(u, v) for simplicity.

2. Invertibility of the matrix N

In this section, we show that a matrix belongs to Ω2 defined by (1.5) if and only if such amatrix is a positive semidefinite
matrix, and then discuss the invertibility of the matrix N defined by (1.3) with (X, Y ) ∈ Ω1 defined by (1.4).

We first recall some basic concepts and results.

Definition 2.1. Given M ∈ ℜ
n×n and f : ℜ

n
→ ℜ

n.

(i) M is called a positive semidefinite matrix if xTMx ≥ 0 for every x ∈ ℜ
n; and a P0-matrix if for every 0 ≠ x ∈ ℜ

n, there
exists xk ≠ 0 such that xk(Mx)k ≥ 0.

(ii) f is a monotone function if for any x, y ∈ ℜ
n, ⟨x − y, f (x) − f (y)⟩ ≥ 0; and a P0-function if for every x ≠ y ∈ ℜ

n, there
exists xk ≠ yk such that (xk − yk)(f (x) − f (y))k ≥ 0.

Proposition 2.1. Given M ∈ ℜ
n×n and f : ℜ

n
→ ℜ

n, the following are known.

(i) M ∈ ℜ
n×n is a P0-matrix if and only if all its principal minors are nonnegative.

(ii) If f : ℜ
n

→ ℜ
n is Fréchet differentiable, then f is a monotone function if and only if Df (x) is a positive semidefinite matrix

for any x ∈ ℜ
n.

By using Definition 2.1 and Proposition 2.1, we establish the following necessary and sufficient condition.

Theorem 2.1. M ∈ Ω2 (see (1.5)) if and only if M is a positive semidefinite matrix.
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