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a b s t r a c t

An improved version of rectangularmethod (IRM) is introduced in this paper to numerically
solve the stochastic Volterra equation (SVE). We focus on studying the order of error
between the numerical and exact solutions, which is improved to O(h). Furthermore,
an explicit form of the IRM scheme is introduced and its convergence is established. A
numerical example has also been presented to show the feasibility of the methods.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let {Ω, F , P} be a complete probability space with a filtration {Ft , t ≥ 0} that is increasing and right continuous and F0
contains all P-null sets. Let Wt be a standard Brownian motion defined on the probability space. The aim of this paper is to
introduce numerical schemes to Itô type stochastic Volterra equation (SVE) of the form:

Xt = x +

∫ t

0
a(t, Xs)ds +

∫ t

0
b(t, Xs)dWs, t ∈ [0, T ], (1.1)

where a, b are measurable functions, x is the initial value. Stochastic Volterra equations are a natural extension of
deterministic ones. Comprehensive results concerning deterministic Volterra equations and their numerical solutions in
connection with problems arising in mathematical physics can be found in the existing literature (see [1–5] for example).

Recently, stochastic Volterra equations have received great attention (see [6–9] for example). Most SVEs do not have
analytic solutions and hence it is of great importance to provide numerical schemes. Numerical schemes to stochastic
differential equations (SDEs) have been well developed (see [10–13] for example). However, there are still very few papers
discussing the numerical solutions for stochastic Volterra equations.

A linear stochastic difference equation was introduced in [14] to solve a linear stochastic Volterra integro-differential
equation. Their method employed the Euler scheme to approximate the stochastic differential part and a Θ method to
approximate the integral with a quadrature. Their numerical method works only for a special case of stochastic Volterra
equations. Numerical solutions to Volterra equations in Hilbert spaces have also been studied recently. Galerkinmethodwas
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used in [15] to address the numerical problem of a particular linear Volterra equation. In this paper, the authors adapted a
resolvent approach to treat a special class of stochastic Volterra equations.

In [16], we have proposed a rectangular method (RM) for the stochastic Volterra equation of the form (1.1), and establish
the orderO(

√
h) between the numerical and exact solutions. In this paper, wewill develop an improved rectangularmethod

(IRM) for (1.1) and this scheme allows to improve the order of error to O(h). Furthermore, we will introduce an explicit
form of IRM scheme, which avoids derivative in the same way as the Runge–Kutta schemes for deterministic cases and
hence makes the scheme more feasible to implement. The convergence of the explicit IRM scheme is also established. For
simplicity of exposition, only one-dimensional stochastic Volterra equations are considered in this paper. We like to stress
that our methods work equally well also for multi-dimensional stochastic Volterra equations.

The rest of the paper is organised in three sections. Section 2 reviews the RM scheme and introduces the IRM scheme.
Section 3 establishes the convergence of IRM scheme. Section 4 discusses the explicit form of IRM and its convergence
theorem. We conclude the paper with numerical example in Section 5.

2. IRM scheme

Consider the one-dimensional SVE:

Xt = X0 +

∫ t

0
a(t, Xs)ds +

∫ t

0
b(t, Xs)dWs, 0 ≤ t ≤ T , (2.1)

with X0 = x, where a : R × R → R and b : R × R → R.
In this paper, we discuss the numerical schemes with uniform stepsize, that is h = T/N,N ≥ 1. Let tn = nh, n =

0, 1, 2 . . .N , with [s] denoting the largest integer smaller than s. Let ns = [s/h], and sn = [s/h]h = tns . Furthermore,
for convenience we write Xtn as Xn and its approximation as Yn. We use the following notations: a′

t(s, Xu) =
∂a
∂s (s, Xu),

a′′
t (s, Xu) =

∂a2

∂s2
(s, Xu), a′

x(s, Xu) =
∂a
∂Xu

(s, Xu), a′′
tx(s, Xu) =

∂a2
∂s∂Xu

(s, Xu) and etc. C and K are constants throughout this paper
but they may change from line to line.

It is well known [16] that under the following hypotheses:

(H1): X0 is F0-measurable with E[|X0|
2
] < ∞

(H2): (Global Lipschitz condition) There exists a constant K > 0 such that

|a(t, x) − a(t, y)| ∨ |b(t, x) − b(t, y)| ≤ K |x − y|;
|a(t, x) − a(s, x)|2 ∨ |b(t, x) − b(s, x)|2 ≤ K(1 + |x|2)|t − s|,
for all s ≤ t ∈ [0, T ] and x ∈ R,

the stochastic Volterra equation (2.1) has a continuous pathwise-unique strong solution Xt on [0, T ] such that

sup
0≤t≤T

E[|Xt |
2
] ≤ CE(1 + |X0|

2);

E(|Xt − Xs|
2) ≤ CE(1 + |X0|

2)|t − s|.

Without loss of generality, we only discuss the approximate solution at grid points ti, where i ≥ 0. In [16], we have proposed
rectangular method (RM) to SVEs which is defined as follows:

Let Y0 = X0, and

Yn = Y0 +

n−1−
i=0

a(tn, Yi)h +

n−1−
i=0

b(tn, Yi)∆Wi, (2.2)

where h = ti+1 − ti and ∆Wi = Wi+1 − Wi.
Inspired by the modification of Euler scheme to Milstein scheme, we will introduce IRM by adding two more terms in

each approximate step to decrease the local error for approximate solution. However unlike Milstein scheme, the drift and
volatility coefficients of approximate solution will be updated all the time due to the nature of long time dependence in the
Volterra equation.

We propose the improved rectangular method (IRM) for the Volterra equation as follows:
Let Y0 = X0.

Y1 = Y0 +

∫ t1

0
a(t1, Y0)du +

∫ t1

0
b(t1, Y0)dWs

+

∫ t1

0

∫ s

0
a′

x(t1, Y0)b(0, Y0)dWuds +

∫ t1

0

∫ s

0
b′

x(t1, Y0)b(0, Y0)dWudWs. (2.3)



Download	English	Version:

https://daneshyari.com/en/article/4639908

Download	Persian	Version:

https://daneshyari.com/article/4639908

Daneshyari.com

https://daneshyari.com/en/article/4639908
https://daneshyari.com/article/4639908
https://daneshyari.com/

