
Journal of Computational and Applied Mathematics 235 (2011) 2670–2678

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Condition number based complexity estimate for solving
polynomial systems✩

Zhikun She a,∗, Bican Xia b, Zhiming Zheng a

a SKLSDE, LMIB and School of Mathematics and Systems Science, Beihang University, Beijing, China
b School of Mathematical Sciences, Peking University, Beijing, China

a r t i c l e i n f o

Article history:
Received 18 January 2009
Received in revised form 26 June 2010

MSC:
primary 68W40
secondary 68W30

Keywords:
Real-root-counting
Newton operator
Condition number
Complexity analysis

a b s t r a c t

By modifying and combining algorithms in symbolic and numerical computation, we
propose a real-root-counting based method for deciding the feasibility of systems of
polynomial equations. Along with this method, we also use a modified Newton operator to
efficiently approximate the real solutions when the systems are feasible. The complexity
of our method can be measured by a number of arithmetic operations which is singly
exponential in the number of variables.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Solving systems of polynomial equations using computer is of great interest in both industrial and academic areas. In
the literature of numerical analysis, there are many classical methods such as the Newtonmethod, the simplex method and
the homotopy method for solving polynomial systems numerically. On the other hand, many new algorithms [1–6] with
lower complexity have been proposed for deciding the feasibility of systems of polynomial equations and inequalities after
the work of Tarski [7], which is well known to have hyper-exponential complexity. In particular, based on the real Turing
machine [8,9], Cucker and Smale [5] gave an algorithm with singly exponential complexity for deciding the feasibility of
systems of polynomial equations.

Isolating the real solutions of polynomial equation(s) is an important topic in computational real algebra from the
viewpoint of symbolic computation. Isolating the real roots of a univariate polynomial relies on algorithms for counting
real roots in an interval [10]. Analogously, we can achieve the goal of isolating the real solutions of multivariate polynomial
equations by combining the subdivisionmethodwith the algorithm for counting the real solutions of the system in a region.
Such algorithms for real-root-counting exist (e.g., [11,12]). In this paper, we would like to use the method of Pedersen
et al. [11] and provide an upper bound for the number of bisections in terms of a newly defined auxiliary quantity.

When all the real solutions have been isolated, the feasibility of the given system is determined. To approximate the
solutions faster, we employ a numerical method—a modified Newton method. The original version of this Newton method

✩ The work was partly supported by Beijing Nova Program, NKBRPC-2005CB321902, NSFC-61003021 and SKLSDE-2010ZX-02.
∗ Corresponding author.

E-mail address: zhikun.she@buaa.edu.cn (Z. She).

0377-0427/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2010.11.018

http://dx.doi.org/10.1016/j.cam.2010.11.018
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:zhikun.she@buaa.edu.cn
http://dx.doi.org/10.1016/j.cam.2010.11.018


Z. She et al. / Journal of Computational and Applied Mathematics 235 (2011) 2670–2678 2671

was proposed in [5]. It involves approximate computations of many auxiliary quantities such as Lf , α(f , x) and β(f , x). Note
that the original definitions of Lf , α(f , x) and β(f , x) are complicated and can be found in [5]. However, in our method, we
avoid defining and approximating such complicated auxiliary quantities.

The complexity of our method to decide the feasibility of systems of polynomial equations and to approximate their real
solutions is measured by a number of arithmetical operations, which is proved to be singly exponential in the number of
variables and an intrinsic quantity (i.e., a newly defined condition number).

This paper is organized as follows. In Section 2,we first describe the algorithmproposed in [11] for counting real solutions
of systems of polynomial equations inside a real semi-algebraic constraint region and also an algorithm for isolating the
real roots. In Section 3, we introduce a modified Newton method and give an upper bound for the number of bisections.
In Section 4, we first propose our real-root-counting based algorithm with complexity analysis for deciding the feasibility
and approximating the real solutions of systems of homogeneous polynomial equations, and then extend this algorithm to
general cases. In Section 5, we conclude our paper.

2. An algorithm for counting real roots

The number of distinct real roots of a univariate polynomial in an interval can be determined by some results such as
Sturm’s theorem and Descartes’ rule of signs [13,10]. For systems of multivariate polynomial equations, we employ the
method proposed in [11] in this section.

Let f1, . . . , fk ∈ R[x1, . . . , xn] (i.e., a polynomial ring over R) be real polynomials, I = ⟨f1, . . . , fk⟩ ⊆ R[x1, . . . , xn] be the
ideal generated by the given polynomials, and VR(I) be the set {x ∈ Rn

: fi(x) = 0, i = 1, . . . , k}, where x = (x1, . . . , xn).
Suppose that A = R[x1, . . . , xn]/I is a finite-dimensional vector space. For any f ∈ A, we may consider the vector space
endomorphism induced by multiplication with f , which is denoted by mf ∈ EndR(A). This defines a homomorphism
m : A → EndR(A), so thatmfmg = mfg . Note thatmf is a real matrix here and please refer to [11] for details.

We define a symmetric bilinear form S : A×A → R by S(f , g) = Tr(mfmg) = Tr(mfg), where Tr(M) denotes the trace of
the matrixM . For a given basis B = {wj} of A, the associated matrixM for S with respect to B is given byMi,j = Tr(mwimwj).
Similarly, for each polynomial h, we can construct a bilinear form as Sh(f , g) = S(hf , g) = Tr(mfgh). The associated matrix
Mh for Sh with respect to B is given by (Mh)i,j = Tr(mhwiwj). Obviously, Mh is a real symmetric matrix implying that all its
eigenvalues are real.

Recall from [11] that if I is a zero-dimensional ideal, then for any h ∈ R[x],

σ(Mh) = ♯{x ∈ VR(I) : h(x) > 0} − ♯{x ∈ VR(I) : h(x) < 0}, (1)

where σ(Mh) denotes the signature ofMh [11,14] and for a set S, ♯S denotes the number of elements in S.
Let Rn

= H+
∪ H−

∪ VR(h), where H+
= {x ∈ Rn

: h(x) > 0} and H−
= {x ∈ Rn

: h(x) < 0}. Using Eq. (1),
♯VR(I) ∩ H+, ♯VR(I) ∩ H− and ♯VR(I) ∩ VR(h) can be determined by the following relation1 1 1

0 1 −1
0 1 1

♯VR(I) ∩ VR(h)
♯VR(I) ∩ H+

♯VR(I) ∩ H−

 =


σ(M1)
σ (Mh)
σ (Mh2)


. (2)

As a preprocessing of computingMh, amonomial basis B of A is constructed byGröbner basis computing [13,15,16]. As our
discussion is restricted to the zero-dimensional case, the complexity of this preprocessing is well known to be a polynomial
in degree d and the numberm of the input polynomials and singly exponential in the number n of variables. More precisely,
the complexity ismO(1)(dn)O(n).

Making use of Eq. (2) and Ben-Or et al.’s trick [17], Pedersen et al. [11] gave the CRZ-algorithm (i.e., ‘‘Counting Real
Zeros’’ algorithm) for counting the real zeros of a system in any real semi-algebraic constraint region, whose computational
complexity is singly exponential in the number of constraints.

Remark 1. For a detailed description of the CRZ-algorithm, please refer to [11]. Here, we just provide a brief version of the
CRZ-algorithm. For this, we assume that a real semi-algebraic constraint region is defined to be

P = {x ∈ Rn
: h1(x)ε1, . . . , hs(x)εs},

where hj(x) is a polynomial and εj ∈ {> 0, = 0, < 0} for j ∈ {1, . . . , s}. Moreover, for ε = (ε1, . . . , εs) ∈ {> 0, = 0, < 0}s,
let cε(F ,H) = ♯{x ∈ VR(I) : hiεi, 1 ≤ i ≤ s}. The CRZ-algorithm (i.e., ‘‘Counting Real Zeros’’ algorithm) which outputs the
set of CRZ(F ,H) = {cε(F ,H) : ε ∈ {> 0, = 0, < 0}s} is briefly described as follows.

– Compute PM(F ,H) = {mhi : 1 ≤ i ≤ s}.
– For 1 ≤ j ≤ s, knowing the CRZ(F ,HJ), where HJ having j elements, compute the CRZ(F ,HJ ′),HJ ′ having j′ elements and

HJ ⊂ H ′

J . �



Download English Version:

https://daneshyari.com/en/article/4639923

Download Persian Version:

https://daneshyari.com/article/4639923

Daneshyari.com

https://daneshyari.com/en/article/4639923
https://daneshyari.com/article/4639923
https://daneshyari.com

