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1. Introduction

The aim of this work is to study the oscillatory behaviour of the differential equation of mixed type

0 0
X(t) = / x(t —r(6)dv(6) + / x(t + t(0))dn(6) (1)
-1 -1

where x(t) € R, v(0) and n(0) are real functions of bounded variation on [—1, 0] normalized so that v(—1) = n(—1) = 0,
and r(0) and 7 (0) are nonnegative real continuous functions on [—1, 0]. Taking
Il = max{z(0) : 6 € [-1, 0]},

the advance 7(0) will be assumed to satisfy

T(6o) = Izl > ©(0), VO # 6. (2)
In the case of 7(6y) > 0, the function n(@) is supposed to be atomic at 6y, that is, such that
n(6y) —nd) #0. (3)
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The Eq. (1) represents the wider class of linear functional differential equations of mixed type and is considered in [1] as
a basis for some mathematical applications appearing in the literature, such as in [2,3].

Letting R = max{||r|, ||z}, by a solution of (1) we will mean any differentiable function x : [—R, +00) — R which
satisfies (1) for every t € [0, +00).

As usual, we will say that a solution x(t) of (1) oscillates if it has arbitrarily large zeros. In [1] x(t) is called oscillatory if
there is no cone, X, such that x(t) € X, eventually. Notice that for equations, both definitions coincide. When all solutions
oscillate (1) will be said to be oscillatory.

By assuming that delays and advances are positive and differentiable on [—1, 0], one can obtain some special criteria for
having (1) oscillatory. In this paper we will analyse this case, complementing the results in [4] for the case where delays and
advances are only continuous. Further theoretical results for delay equations are obtained in [5] and these can be extended
in a natural way to the mixed equation.

The two main ingredients in theory of linear delay equations (see [6]) are the existence of a unique solution, for any given
initial condition, and the exponential boundedness on those solutions. As is shown in [7], this is not at all the situation of
a differential equation of mixed type like (1). However, under the atomicity assumption (3), one has that every oscillatory
solution is exponentially bounded ast — oo [1, Proposition 4]. This fact enables the oscillatory behaviour of (1) to be studied
through the analysis of the zeros of the characteristic equation

0 0
A =/ exp(—Ar(0))dv(0) +/ exp(At(0))dn(8). (4)
-1 -1

In fact, if we let
0

0
M) =/ exp(—kr(@))dv(@)—i—/ exp(At(0))dn(8),

1 -1
by [1, Corollary 5] the Eq. (1) is oscillatory if and only if M(X) # A, for every real A. Therefore, if either
M) > A, VAeR (5)
or
M@Q) <A, VYrAeR (6)

we can conclude that Eq. (1) is oscillatory.

2. Differentiable delays and advances

By an increasing (decreasing) function on an interval [a, b] we will mean any nondecreasing (respectively nonincreasing)
function, ¢, such that ¢(a) < ¢(b) (respectively, ¢(a) > ¢(b)). Assuming that —1 < 8; < 0, let D (6;) be the family of all
positive differentiable functions, which are increasing on [—1, ;] and decreasing on [61, 0].If 6; = 0, we obtain the set, D,-+
of all positive increasing differentiable functions on the interval [—1, 0]. In the case where §; = —1, we obtain the class Dj
of all decreasing positive differentiable functions on [—1, 0].

Forr € D*(0;) and T € D™ (6y) with 6y as in (2), we define the value

0 0
S;=e! (f v(@)dlnr(9)+f n(@)dlnr(&)).
-1 -1

Through (5) we obtain the following theorems.

Theorem 2.1. For r € D™ (0;) and T € D (6y), let

v(@) <0 forB e[-1,064], v(@) >0 forO € [6,0] (7)

n@®) <0 foroel[—1,6[, 0@ >0 foro e[, 0], (8)
such that n(0) > 0. If

1+ In(z(0)n(0)) + t(0)S; > 0 (9)

then the Eq. (1) is oscillatory.
Proof. For A = 0, we have M(0) = v(0) + n(0) > 0.Let A # 0. Using integration by parts we obtain

0 0
M(X) = exp(—Ar(0))v(0) + exp(At(0))n(0) + A/ exp(—Ar(9))v(0)dr(9) — A/ exp(At(0))n(®)dr(6). (10)
1 ~1

Since v(0)r'(0) < 0and n(0)t’'(#) < 0for6 € [—1, 0], and uexp(—u) < 1/e, for every real u, we have
M(A) > exp(—Ar(0))v(0) + exp(At(0))n(0) + S;.
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