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a b s t r a c t

Let L := −r−2(r∂r )2 − ∂2z . We consider the equation Lu = f on a bounded polygonal
domain with suitable boundary conditions, derived from the three-dimensional axisym-
metric Poisson’s equation. We establish the well-posedness, regularity, and Fredholm re-
sults in weighted Sobolev spaces, for possible singular solutions caused by the singular
coefficient of the operator L, as r → 0, and by non-smooth points on the boundary of
the domain. In particular, our estimates show that there is no loss of regularity of the so-
lution in these weighted Sobolev spaces. Besides, by analyzing the convergence property
of the finite element solution, we provide a construction of improved graded meshes, such
that the quasi-optimal convergence rate can be recovered on piecewise linear functions for
singular solutions. The introduction of a new projection operator from the weighted space
to the finite element subspace, certain scaling arguments, and a calculation of the index of
the Fredholm operator, togetherwith our regularity results, are the ingredients of the finite
element estimates.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let Ω̃ := Ω × [0, 2π) ⊂ R3 be a bounded domain, formed by the revolution of the polygonΩ ⊂ R2 with respect to the
z-axis (see Fig. 1). Consider the three-dimensional Poisson’s equation in Ω̃ , with zero Dirichlet boundary conditions. In the
presence of axisymmetry in the data, the Laplace operator in the three-dimensional domain becomes the two-dimensional
elliptic operator

L := −
1
r2
(r∂r)2 − ∂2z , r > 0,

where r and z are the variables in the cylindrical coordinates (r, θ, z). Consequently, the three-dimensional axisymmetric
Poisson’s equation can be reduced to

Lu = f inΩ, u|Γ0 = 0, (1)

where Γ0 := ∂Ω̃ ∩ ∂Ω . We are interested in studying the finite element method (FEM) for the elliptic equation (1). The
reduction of the dimension (from three dimensions to two dimensions) leads to substantial savings on the computation of
the numerical solution for the original three-dimensional elliptic boundary value problem, and hence is of practical interest.

Suppose the closure of the domain Ω intersects the z-axis. Despite the benefit in numerical computation, this process,
however, introduces singular coefficients in the elliptic operator L and results in Sobolev spaces

Hm
r (Ω) = {v, r1/2∂ ir∂

j
zv ∈ L2(Ω), i + j ≤ m}

with weights vanishing at r = 0, which raises difficulties both in the analysis of the equation and in the estimates of the
FEM. For the validation on the reduction of the dimension, it is shown in [1,2] that, the three-dimensional Poisson’s equation
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is equivalent to the two-dimensional equation (1), by using Fourier analysis to prove certain isomorphisms between the
usual Sobolev spaces Hm(Ω̃) and the weighted spaces Hm

r (Ω). An approximation property of the finite element solution
for the axisymmetric Stokes problem in the space Hm

r is discussed in [3]. We also mention [4,5], in which the Fourier–FEM,
a combination of the approximating Fourier and the FEM, is studied for the axisymmetric Poisson’s equation. In addition,
estimates on the convergence of the multigrid method for the axisymmetric Laplace operator and for the Maxwell operator
can be found in [6,7], respectively.

Assuming sufficient regularity of the solution of Eq. (1), the existing results (see [3,6–8] and references therein) suggest
that the H1

r -norm of the error between the linear finite element solution and the real solution is bounded by Ch on the
triangulation with quasi-uniform triangles of size h. This provides the analogy of the quasi-optimal convergence rate of the
finite element solution for elliptic boundary value problemswith regular coefficients in the usual Sobolev spaces and ensures
good finite element approximations for the three-dimensional axisymmetric equation with a much lighter computational
load than solving the original three-dimensional problem.

Furthermore, the solution of Eq. (1) may have singularities even in theseweighted spacesHm
r (Ω), due to the non-smooth

points on the boundary ∂Ω and to the singular coefficient when r → 0. The less regularity in the solution slows down the
convergence rate of the finite element solution, as well as raises well-posedness concerns in these weighted spaces. Note
that near the vertices of Ω that are not on the z-axis, the coefficients of the operator L are bounded and therefore, the
singularities in the solution have the same character as the corner singularities of regular elliptic equations on polygonal
domains. There exists a great deal of literature regarding different aspects of corner singularities of two-dimensional
elliptic equations. See for example the monographs [9–14], research papers [15–24] on the analysis of the singular solution,
and [25–28,16,29–31] and references therein on the numerical approximation for singular solutions of this type. For vertices
on the z-axis, the situation is different, since the coefficient 1/r → ∞. It turns out that the possible singularities near these
vertices are closely related to the three-dimensional vertex singularities of elliptic equations. This is our starting point for the
work presented in this paper. See [32–36] for discussions on singular solutions of three-dimensional differential equations.

Different from the existing results mentioned above [3,2,6,7,4,5], we shall focus here on establishing well-posedness
and regularity results for singular solutions of Eq. (1) in suitable Sobolev spaces and on the construction of simple,
explicit finite element schemes to approximate these solutions quasi-optimally. Our goal shall be achieved by introducing
the framework in a modified weighted Sobolev space Km

a,r(Ω) (Definition 2.7), which allows us to apply certain usual
finite element formulations to Eq. (1). In the convergence analysis of the finite element solution, we introduce a new
interpolation operator from a local regularization process (Definition 4.4). Compared with the usual nodal interpolation,
this regularization technique demonstrates critical properties of functions in the weighted spaces, which are also useful to
treat other axisymmetric problems (see [6,37]).

The rest of the paper is organized as follows. In Section 2, we first briefly recall some existing results in the literature for
the axisymmetric equation. Then, we define two types of weighed Sobolev spaces for further analysis in Sections 3 and 4,
as well as notation that will be used throughout this paper. In addition, several relevant properties of the weighted Sobolev
space will be discussed.

In Section 3, we establish our a priori estimates (well-posedness, regularity, and the Fredholm property) for the
axisymmetric equation in the weighted space Km

a,r(Ω). In particular, we shall show the operator

L : K2
a+1,+(Ω) ∩ {v|Γ0 = 0} → K0

a−1,r(Ω)

defines an isomorphism for a > 0 small and is Fredholm as long as a is away from a countable set of values. This allows us
to compute the range of the index a, in which the isomorphism above still holds.

The finite element solution for Eq. (1) is studied in Section 4. In the first part of this section, we briefly present the
approximation property of piecewise linear polynomials in the weighted space H2

r (Ω). With a new interpolation operator,
we show that the quasi-optimal convergence rate of the linear finite element solution is attained, assuming the solution
is sufficiently regular. Based on these results and on a scaling argument, in the second part of Section 4, we analyze the
convergence rate of the numerical solution in the weighted space Km

a,r(Ω). Then, we describe a construction of a sequence
of triangulations suitably graded to the vertices, such that the quasi-optimal rate is recovered for singular solutions.

In Section 5, we present numerical tests for Eq. (1) on two domains for different singularities (on the z-axis or away
from the z-axis). The rates of convergence of the finite element solutions from different meshes are compared. These tests
suggest that the quasi-optimal convergence rates are achieved on our graded meshes, which is in complete agreement with
the theory.

2. Weighted Sobolev spaces Hm
r and Km

a,r

In this section, we formally introduce the axisymmetric Poisson’s equation and the definitions of someweighted Sobolev
spaces with relevant properties.

2.1. The axisymmetric Poisson’s equation

Let Ω̃ := Ω × [0, 2π) ⊂ R3 be a bounded domain, which is the revolution ofΩ about the z-axis. Suppose Ω̃ intersects
the z-axis and its half section (the intersection of Ω̃ and ameridian half plane)Ω ⊂ R2 is a polygon (see, for example, Fig. 1).
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