
Journal of Computational and Applied Mathematics 235 (2011) 5198–5202

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Conditions for coincidence of two cubic Bézier curves
Wen-Ke Wang a,b,∗, Hui Zhang c,e,f, Xiao-Ming Liu c,d,e,f, Jean-Claude Paul b,c
a School of Computer, National University of Defense Technology, Changsha 410073, China
b INRIA, France
c School of Software, Tsinghua Univ., Beijing 100084, China
d Command and Engineering College of Chemical Defense, Beijing 102205, China
e Key Laboratory for Information System Security, Ministry of Education of China, Beijing 100084, China
f Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

a r t i c l e i n f o

Article history:
Received 7 July 2010
Received in revised form 5 May 2011

Keywords:
Coincidence
Cubic Bézier curve
Control point

a b s t r a c t

This paper presents a necessary and sufficient condition for judging whether two cubic
Bézier curves are coincident: two cubic Bézier curveswhose control points are not collinear
are coincident if and only if their corresponding control points are coincident or one curve
is the reversal of the other curve. However, this is not true for degree higher than 3. This
paper provides a set of counterexamples of degree 4.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Curve–curve intersection calculation is a basic problem in computer aided geometric design [1]. Sederberg andMeyer [2]
proposed using bounding-box subdivision and a bounding wedge to calculate the intersection of two curves. Their method
could be used to determine the intersection points of two curves, efficiently. However, when the two curves are coincident,
their method will introduce infinite subdivisions. In fact, most of the intersection methods are not appropriate for the case
where two curves are coincident [3–5]. A robust CAD system should have the ability to judge whether the two curves are
coincident before making the intersection calculation.

Hu et al. [6] pointed out that if parts of two C∞ regular curves are coincident, the two curves will not be separated at any
points. This conclusion could be used to find the start point and the end point of the coincident part. However, it cannot be
used to judge whether two curves are coincident.

An alternative way of judging whether two curves are coincident is to sample enough points on one curve, and judge
whether these points are on the other curve. Garcia and Li [7] pointed out that the number of solutions of an equation
system is 5n

i=1pi. Here n is the number of equations and pi is the degree of the ith equation. Therefore, if two curves have
enough common points, they are coincident. However, determining whether a point is on a parametric curve is not a trivial
problem and is time-consuming.

Cubic Bézier curves are widely used in CAD systems. This paper proposes a necessary and sufficient condition for judging
whether two cubic Bézier curves are coincident. It takes only a small number of computations to judge whether two such
curves are coincident.
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2. The necessary and sufficient condition

Let A(t) =
∑3

i=0 Bi,3(t)Pi and B(s) =
∑3

i=0 Bi,3(s)Qi be the two cubic Bézier curves. When the four control points of A(t)
are collinear, the control points of B(s) should be collinear. If P1 and P2 are between P0 and P3, and Q1 and Q2 are between
Q0 and Q3, it is obvious that the two curves are coincident if and only if P0 = Q0 and P3 = Q3 or P0 = Q3 and P3 = Q0.
Otherwise, we transform the coordinate of the control points so that all of them locate on theX-axis. Let xAmin and xAmax denote
the minimum and maximum x-values of A(t), and xBmin and xBmax denote the minimum and maximum x-values of B(s). It is
obvious that A(t) and B(s) are coincident if and only if xAmin = xBmin and xAmax = xBmax.

Then we assume that the four control points of A(t) are not collinear. Without loss of generality, we set P0 as the
coordinate origin. Since A(t) and B(s) are coincident, for any given t ∈ [0, 1], there is an s = s(t) ∈ [0, 1] satisfying
that A(t) = B(s(t)). Also, for any given s ∈ [0, 1], there is a t = t(s) ∈ [0, 1] satisfying that B(s) = A(t(s)). We rewrite this
relationship in a polynomial form:

a3xt3 + a2xt2 + a1xt = b3xs3 + b2xs2 + b1xs + b0x (1)

a3yt3 + a2yt2 + a1yt = b3ys3 + b2ys2 + b1ys + b0y (2)

a3z t3 + a2z t2 + a1z t = b3zs3 + b2zs2 + b1zs + b0z . (3)

Here t, s ∈ [0, 1].

Lemma 2.1. The equation shown in Eq. (4) can be derived from Eqs. (1)–(3), where a22 + a21 ≠ 0:

a2t2 + a1t = b3s3 + b2s2 + b1s + b0. (4)

Proof. Consider the coefficients a3x, a3y and a3z .

1. If two or three of them are equal to 0, without loss of generality, we assume that a3x = a3y = 0. Then a2x, a1x, a2y and a1y
cannot be equal to 0 simultaneously, because the control points of A(t) are not collinear. Therefore, Eq. (1) or Eq. (2) has
the form of Eq. (4).

2. If two of them are not equal to 0, without loss of generality, we assume that a3x ≠ 0 and a3y ≠ 0. Eq. (1) multiplied by
a3y, minus Eq. (2) multiplied by a3x yields

â2t2 + â1t = b̂3s3 + b̂2s2 + b̂1s + b̂0.

(a) If a3z ≠ 0, Eq. (1) multiplied by a3z , minus Eq. (3) multiplied by a3x yields a similar equation, whose coefficients of
t2 and t are denoted as ā2 and ā1, respectively. Since Pi (i = 0, 1, 2, 3) are not collinear, â2, â1, ā2 and ā1 cannot be
equal to 0 simultaneously; an equation with the form of Eq. (4) is obtained.

(b) If a3z = 0 and a22z + a21z ≠ 0, Eq. (3) has the form of Eq. (4). Otherwise, a2z = a1z = 0. Then â2 ≠ 0 or â1 ≠ 0 because
Pi (i = 0, 1, 2, 3) are not collinear. Therefore, an equation with the form of Eq. (4) is obtained. �

Now we consider the relationship between Pi and Qi by analyzing Eq. (4).

1. If a2 = 0 and a1 ≠ 0, Eq. (4) could be expressed as

t = k3s3 + k2s2 + k1s + k0. (5)

(a) If k3 = k2 = 0, then t = k1s + k0 and s =
1
k1

(t − k0).

i. If k1 > 0, the ranges of t and s are [k0, k1 + k0] and [−
k0
k1

, 1
k1

(1− k0)], respectively. Since t and s can be any values

in the interval [0, 1], we have [0, 1] ⊆ [k0, k1 + k0] and [0, 1] ⊆ [−
k0
k1

, 1
k1

(1− k0)]. Therefore, k0 ≤ 0, k1 + k0 ≥ 1

and −
k0
k1

≤ 0, 1
k1

(1 − k0) ≥ 1. From the first two inequalities we obtain 1 − k1 ≤ k0 ≤ 0, and 0 ≤ k0 ≤ 1 − k1 is
derived from the last two inequalities. Therefore, k1 = 1, k0 = 0 and t = s. In this case, Pi = Qi (i = 0, 1, 2, 3).

ii. If k1 < 0, similarly, we can obtain k1 = −1, k0 = 1 and t = 1 − s. In this case, Pi = Q3−i (i = 0, 1, 2, 3). A(t) is
the reversal of B(s).

(b) If k3 ≠ 0 or k2 ≠ 0, substitute Eq. (5) into Eq. (1) and let a(s) be the corresponding polynomial. b3xs3+b2xs2+b1xs+b0x
is denoted as b(s). Since a(s) = b(s) for any s ∈ [0, 1], we have a(s) ≡ b(s). Therefore, the coefficient of sn(n > 3)
in a(s) is equal to 0. If k3 ≠ 0, the coefficient of s9 in a(s) is a3xk33, which means that a3x = 0. Otherwise, k3 = 0 and
k2 ≠ 0. The coefficient of s6 is a3xk32. We also have a3x = 0. a3y = a3z = 0 can be obtained in the same way. Like for
Lemma 2.1, we can prove that there is an equation with the following form:

t = l3s3 + l2s2 + l1s + l0.
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