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a b s t r a c t

A finite difference method for a time-dependent convection–diffusion problem in one
space dimension is constructed using a Shishkin mesh. In two recent papers (Clavero
et al. (2005) [2] and Mukherjee and Natesan (2009) [3]), this method has been shown
to be convergent, uniformly in the small diffusion parameter, using somewhat elaborate
analytical techniques and under a certain mesh restriction. In the present paper, a much
simpler argument is used to prove a higher order of convergence (uniformly in the diffusion
parameter) than in [2,3] and under a slightly less restrictive condition on the mesh.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and summary

Consider the singularly perturbed initial-boundary value problem

ut + Lεu = f onΩ := (0, 1)× (0, T ], (1a)
u(x, 0) = s(x) for 0 ≤ x ≤ 1, (1b)
u(0, t) = u(1, t) = 0 for 0 < t ≤ T , (1c)

where

Lεu(x, t) ≡ −εuxx(x, t)+ a(x)ux(x, t)+ b(x, t)u(x, t), (2)

with a(x) > α > 0 and b = b(x, t) ≥ 0 on Ω̄ . The diffusion coefficient ε is a small positive parameter. Further assumptions
on the data of the problem will be given in Section 2.

From (8) one sees that the solution u of (1) has an exponential boundary layer at the side x = 1 of Ω . Consequently,
classical numerical methods on equidistant meshes do not give satisfactory results unless the mesh width depends on the
value of the diffusion parameter ε and is small. Several numerical methods that yield accurate numerical solutions for (1),
uniformly in ε, have been proposed in the literature; see [1, Part II].

In the present paper, we focus on two finite differencemethods for (1) that were presented and analysed in recent papers
in [2,3]. Convergence, uniformly in ε, is proved for these methods in these papers under the restriction that b = b(x). Both
papers use the same mesh (equidistant mesh in time with mesh spacing τ , piecewise-equidistant Shishkin mesh in space
withN mesh intervals) and backward Euler differencing to approximate the time derivative, but their spatial discretizations
seem to be different: Clavero et al. use the second-order HODIE scheme from [4] while Mukherjee and Natesan favour
the hybrid difference scheme of [5]. In Section 3, we shall show that in fact the methods of [2,3] are essentially identical,
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despite the claim in [3, Introduction] that the method of [3] is simpler than that of [2]. We do this for the more general case
b = b(x, t).

We prove in Section 4 that these numerical methods are convergent, uniformly in ε, when applied to (1). Our proof is
much simpler than the proofs in [2,3] as it avoids any asymptotic analysis of the semidiscrete problem that results from
a discretization only in time. It operates under the mesh assumption (15), which is much less restrictive than the mesh
restriction N−q

≤ Cτ for some q ∈ (0, 1) that is assumed in [2,3]. (Here and subsequently C denotes a generic positive
constant that is independent of ε and of the mesh.) When ε ≤ N−1, our convergence result (Theorem 1) becomes

max
i,j

|u(xi, tj)− U j
i | ≤ C[τ + (N−1 lnN)2]. (3)

This sharpens the weaker result

max
i,j

|u(xi, tj)− U j
i | ≤ C[τ + N−2+q(lnN)2]

that was derived in [2,3]. The numerical results presented in [2,3] show that the factor Nq here is an artefact of the analysis,
i.e., that our bound (3) is sharp. We give a further numerical example in Section 5 to illustrate that our convergence result
is indeed sharp.

2. Assumptions on the data

Weassume that all data of the problem are smooth and that the following zero-order and first-order corner compatibility
conditions are satisfied:

s(0) = s(1) = 0, −εs′′(0)+ a(0)s′(0) = f (0, 0), −εs′′(1)+ a(1)s′(1) = f (1, 0). (4)

Then (1) has a unique solution in the parabolic Hölder space C2+α,1+α/2(Ω̄) (see [6,1]). We also assume that the second-
order corner compatibility conditions are satisfied so that C4+α,2+α/2(Ω̄). These conditions can be written down explicitly
in terms of the data of the problem in the following way: differentiating (1a) with respect to t yields

ft = utt + Lεut + btu = utt + Lε(f − Lεu)+ btu.

Hence, recalling (1b), (1c) and (4), the second-order corner compatibility conditions are

Lε(Lεs) = Lεf − ft at the corners (0, 0) and (1, 0). (5)

Under these hypotheses, the solution u of (1) has an exponential layer along the boundary x = 1 of Ω and satisfies the
bound ∂k+mu(x, t)

∂xk∂tm

 ≤ C(1 + ε−ke−α(1−x)/ε) for (x, t) ∈ Ω̄ and k + 2m ≤ 4. (6)

This can be shown using the techniques described in [1, Part II, Section 2.2].
The a priori inequality (6) is all that is needed for most of our analysis. In a single place – the derivation of (28) below –

we also need this inequality when k = 4 and m = 1, which is not included in (6). To prove this additional bound, we are
forced to assume also that the data of the problem (1) satisfy the third-order compatibility condition

ftt = Lε(ft − Lε(f − Lεs)− bts) at the corners (0, 0) and (1, 0). (7)

Then, similarly to the derivation of (6), one can show that∂k+mu(x, t)
∂xk∂tm

 ≤ C(1 + ε−ke−α(1−x)/ε) for (x, t) ∈ Ω̄ and k + 2m ≤ 6. (8)

This is in contrast to [2,3] who assume that (8) is valid for k + m ≤ 4, m ≤ 2.

Remark 1. Numerical results indicate that when (7) is violated, the rate of convergence of our numerical method is
unaffected. See Section 5 for an example.

Remark 2. As ε can take a range of values, the compatibility condition (4) implies that

s(0) = s(1) = 0, a(0)s′(0) = f (0, 0), a(1)s′(1) = f (1, 0), s′′(0) = s′′(1) = 0. (9)

Similarly, by invoking (9) one sees that (5) is equivalent to requiring

(a′
+ b)f = afx − ft , (a′′

+ 2bx)s′ = fxx, s(4) = 0

at the corners (0,0) and (1,0). The assumption (7) places further conditions on the data, though as Remark 1 indicates, these
may not needed in practice.

Although these conditions restrict the permissible data, nevertheless it is clear that are satisfied by certain data—for
example if sufficiently many derivatives of s and f vanish at the corners (0, 0) and (1, 0).
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