

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Oscillatory criteria for third-order nonlinear difference equation with impulses $\!\!\!^{\star}$

Wei Lu^{a,b,*}, Weigao Ge^b, Zhihong Zhao^b

^a Department of Mathematics, Suzhou University, Suzhou, Anhui 234000, PR China ^b Department of Mathematics, Beijing Institute of Technology, Beijing 100081, PR China

ARTICLE INFO

Article history: Received 21 December 2009 Received in revised form 19 April 2010

MSC: 39A10 39A21 34K45

Keywords: Difference equation Impulse Nonlinearity Oscillation

1. Introduction

Consider the third-order nonlinear impulsive difference equation

 $\begin{cases} \Delta^3 x(n) + p(n) f(x(n-\tau)) = 0, & n \neq n_k, \ k = 1, 2, 3, \dots \\ \Delta^i x(n_k) = g_{i,k} (\Delta^i x(n_k - 1)), & i = 0, 1, 2, \ k = 1, 2, 3, \dots \end{cases}$ (1.1)

where $p(n) \ge 0$, $p(n) \ne 0$, $0 < n_0 < n_1 < n_2 < \cdots < n_k < \cdots$ and $\lim_{k\to\infty} n_k = \infty$, $\tau \in \mathbb{N}$, $\Delta x(n) = x(n+1) - x(n)$. Here, we always assume that the following conditions hold:

(A) $f : \mathbb{R} \to \mathbb{R}$ is continuous, and there exists an $\varepsilon_0 > 0$ such that $f(u)/u \ge \varepsilon_0 > 0$ for $u \ne 0$;

(B) $g_{i,k}(u)$ is continuous for $u \in (-\infty, +\infty)$, and there exist positive numbers $a_{i,k}$, $b_{i,k}$ such that $a_{i,k} \leq \frac{g_{i,k}(u)}{u} \leq b_{i,k}$ for $u \neq 0, i = 0, 1, 2, k = 1, 2, 3, \dots$

It is well known that the theory of impulsive differential/difference equations not only is richer than the corresponding theory of differential/difference equations without impulses but also provides a more adequate mathematical model for numerous processes and phenomena studied in physics, biology, engineering, etc. There has been a significant development in the theory of impulsive differential equations in the past several years, as various interesting results have been reported (see [1–11] etc., and the references therein). However, the development of the theory of impulsive difference equations is comparatively slow due to numerous theoretical and technical difficulties caused by their peculiarities [12–15]. In particular, to the best of our knowledge, there is little research work on the oscillation of impulsive third-order difference equations.

ABSTRACT

In this paper, we study the oscillation of a third-order nonlinear difference equation with impulses. Some sufficient conditions for the oscillatory behavior of solutions of third-order impulsive nonlinear difference equation are obtained. Some known results in the literature are generalized and improved.

© 2010 Elsevier B.V. All rights reserved.

^{*} Supported by the Nature Science Foundation of China (No. 10671012), the Natural Science Foundation of Anhui Province Education Department (KJ2009B094).

^{*} Corresponding author at: Department of Mathematics, Suzhou University, Suzhou, Anhui 234000, PR China. E-mail addresses: luwei6118@hotmail.com (W. Lu), gew@bit.edu.cn (W. Ge).

^{0377-0427/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.cam.2010.04.037

Li et al. [13] investigated Eq. (1.1) when f(x) = x, $g_{i,k}(x) = d_i x$, with constants d_i , i = 0, 1, 2, and obtained corresponding sufficient conditions for oscillatory behavior.

The present paper is motivated by the work of [13]. Our purpose is to tackle some sufficient conditions for the oscillation of solutions of Eq. (1.1). We extend Li's work and correct a mistake in Theorem 2, [13].

Let

$$c_{i,k} = \max\{|a_{i,k} - 1|, |b_{i,k} - 1|\}$$
 for $i = 0, 1, 2, k = 1, 2, 3, ...$

and

$$n^{(k)} = n \cdot (n-1) \cdots (n-k+1), \quad k \in \mathbb{N}.$$

Definition 1.1. By a solution of Eq. (1.1) we mean a real-valued sequence $\{x(n)\}$, defined on $\{n_0 - \tau, n_0 - \tau + 1, n_0 - \tau + 2, \ldots\}$ which satisfies Eq. (1.1) for $n \ge n_0$.

Definition 1.2. A solution of Eq. (1.1) is said to be nonoscillatory if the solution is eventually positive or eventually negative. Otherwise, the solution is oscillatory.

In this paper, we assume $a_{i,k}$, i = 0, 1, 2, k = 1, 2, ... satisfy that

$$(H): (n_1 - n_0) + a_{i,1}(n_2 - n_1) + a_{i,1}a_{i,2}(n_3 - n_2) + \dots + a_{i,1}a_{i,2} \cdots a_{i,m}(n_{m+1} - n_m) + \dots = \infty.$$

This paper is organized as follows. In Section 2, we shall offer some lemmas, which will be used in Section 3 to prove our main theorems. To illustrate our results, some examples are given in Section 4.

2. Some lemmas

In order to prove our theorems, we need the following lemmas.

Lemma 2.1. Assume that x(n) is a solution of Eq. (1.1) and (H) is satisfied. Given $i \in \{1, 2\}$, if there exists $N \ge n_0$ such that $\Delta^{i+1}x(n) \ge 0$ (≤ 0), $\Delta^i x(n) > 0$ (< 0) for $n \ge N$. Then $\Delta^{i-1}x(n) \ge 0$ (≤ 0) holds for sufficiently large n.

Proof. We only prove the conclusion under the assumption that $\Delta^{i+1}x(n) \ge 0$, $\Delta^i x(n) > 0$. Without loss of the generality, suppose $N = n_0$. By $\Delta^{i+1}x(n) \ge 0$, we have that $\Delta^i x(n)$ is monotonically nondecreasing in $[n_k, n_{k+1}), k = 0, 1, 2, ...$ Hence

$$\Delta^{l} x(n) \geq \Delta^{l} x(n_{k}), \quad n \in [n_{k}, n_{k+1}).$$

Summing the above inequality from n_k to $n_{k+1} - 1$, we have

$$\Delta^{l-1} x(n_{k+1}) \ge \Delta^{l-1} x(n_k) + \Delta^l x(n_k)(n_{k+1} - n_k).$$
(2.1)

So

$$\Delta^{l-1}x(n_2) \ge \Delta^{l-1}x(n_1) + \Delta^l x(n_1)(n_2 - n_1).$$
(2.2)

According to (2.2) and (B), we have

$$\begin{split} \Delta^{i-1} x(n_3) &\geq \Delta^{i-1} x(n_2) + \Delta^i x(n_2)(n_3 - n_2) \\ &\geq \Delta^{i-1} x(n_1) + \Delta^i x(n_1)(n_2 - n_1) + g_{i,2} (\Delta^i x(n_2 - 1))(n_3 - n_2) \\ &\geq \Delta^{i-1} x(n_1) + \Delta^i x(n_1)(n_2 - n_1) + a_{i,2} \Delta^i x(n_2 - 1)(n_3 - n_2) \\ &\geq \Delta^{i-1} x(n_1) + \Delta^i x(n_1)(n_2 - n_1) + a_{i,2} \Delta^i x(n_1)(n_3 - n_2). \end{split}$$

By induction, we get

$$\Delta^{i-1}x(n_k) \geq \Delta^{i-1}x(n_1) + \Delta^i x(n_1) \left[(n_2 - n_1) + a_{i,2}(n_3 - n_2) + \dots + a_{i,2}a_{i,3} \cdots a_{i,k-1}(n_k - n_{k-1}) \right]$$

From (H), we know that there exists *l* such that $\Delta^{i-1}x(n_k) > 0$ for $k \ge l$. Since $\Delta^i x(n) > 0$, we obtain

$$\Delta^{i-1}x(n) > \Delta^{i-1}x(n_k) > 0, \quad n \in [n_k, n_{k+1}), \ n_k \ge n_k$$

If $\Delta^{i+1}x(n) \leq 0$, $\Delta^{i}x(n) < 0$ for $n \leq N$, then a similar reasoning of the previous proof implies the other conclusion. We omit the details to avoid repetition. \Box

Lemma 2.2. Let x(n) be a solution of Eq. (1.1) and (H) hold. Given $i \in \{1, 2, 3\}$, suppose there exists a constant $N(N \ge n_0)$ such that x(n) > 0, $\Delta^i x(n) \le 0$, $\Delta^i x(n) \ne 0$ in any interval $[n, \infty)$ for $n \ge N$. Then $\Delta^{i-1}x(n) > 0$ holds for sufficiently large n.

Proof. Without loss of generality, we assume $N = n_0$. We first prove that $\Delta^{i-1}x(n_k) > 0$ holds for any $n_k \ge n_0$. Otherwise, we can choose $n_j > n_0$ such that $\Delta^{i-1}x(n_j) \le 0$. From $\Delta^i x(n) \le 0$, we get that $\Delta^{i-1}x(n)$ is nonincreasing in any $[n_k, n_{k+1})$.

Download English Version:

https://daneshyari.com/en/article/4640040

Download Persian Version:

https://daneshyari.com/article/4640040

Daneshyari.com