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a b s t r a c t

We find solutions for the diffusion-wave problem in 1D with n-term time fractional
derivatives whose orders belong to the intervals (0, 1), (1, 2) and (0, 2) respectively,
using the method of the approximation of the convolution by Laguerre polynomials in the
space of tempered distributions. This method transfers the diffusion-wave problem into
the corresponding infinite system of linear algebraic equations through the coefficients,
which are uniquely solvable under some relations between the coefficients with index
zero.

The method is applicable for nonlinear problems too.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Preliminaries

Anomalous processes in time are introduced in [1,2]. Anomalous relaxation and diffusion phenomena anomalous due to
time are the subject of [3]. Fractional diffusion equations which are described by anomalous diffusion processes have for the
characteristic displacement scales which are a power of time.With a lack of it we have the diffusion equationwith fractional
derivatives of distributed order.

Fick’s diffusion equation describes normal kinetic processes. It is a parabolic partial differential equation for the
probability density function u(x, t) and k is positive constant,

∂tu(x, t) = k2∂2x u(x, t).

In many cases which are called anomalous kinetics the characteristic displacement scale behaves as tβ , β is different from
1 or does not scale at all.

Proper scaling behavior described through the diffusion equations with fractional derivative (w.r.t.) temporal or spatial
variables for anomalous diffusion are the Levy flights and the continuous time random walks with power law waiting time
distributions (cf. [4,5]). Recall the equations concerning this.
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(1) Time fractional equations with Caputo fractional derivative (in notation Dβ∗ (w.r.t.) the temporal variable),

Dβ
∗
u(x, t) = k2∂2x u(x, t), (0 < β < 1), (1)

k is a fractional diffusion constant [k] = cm2/sβ ;
(2) Space fractional diffusion equation with Riemann–Louville or Riesz derivative on the RHS

∂tu(x, t) = k2∂2/βx u(x, t), (β > 1). (2)

These forms are known as normal. For modified forms of these equations cf. [3].
Nonscaling anomalous diffusion processes (cf. [6–8,2]) are referred to truncated Levy flights and Sinai superslow

diffusion. The behavior of the corresponding probability density function is described by a diffusion equation with
distributed order derivatives (cf. [6,7]). Distributed order derivative is a linear operator (cf. [2]) defined as a weight sum
of different fractional derivatives or an integral of such over their order,

 b
a dβp(β)∂βz acting on the function of the

corresponding variable z, where z means time or space.
In [3] modified distributed order equations are considered with both temporal and spatial fractional derivatives showing

transformation of the anomalous solution at small times into the normal solution as a long time behavior. This has an
application in biophysics, plasma physics and econophysics.

Mathematical foundation, existence–uniqueness and construction of the solution to the Cauchy problem for general
linear evolution equation with temporal fractional derivatives of distributed orders are established in [9,10]. The following
equations are related:
(i) time fractional equation with Laplace operator (w.r.t.) spatial variable of the form (1) for 0 < β < 1 and 1 < β < 2;
(ii) space fractional differential equations of the type (2) for 0 < β < 1. In the one-dimensional case and under the

condition 0 < β ≤ 1 this equation describes Levy–Feller diffusion processes, which is Markovian (cf. [8]). Feller
semigroups are constructed (cf. [11,12]), for more general operators on the RHS.

(iii) time and space fractional equation

Dβ
∗
u(x, t) = Dα0u(x, t), x ∈ Rn, α, β > 0,

describing anomalous diffusion processeswhich is non-Markovian in character (cf. [13]), andmodified equations in [3]:

∂tu(x, t) = k2D1−β∂2x u(x, t);

where 0 < β < 1 for subdiffusion and for superdiffusion

D1−1/β∂tu(x, t) = k2∂2x u(x, t);

when β > 0 with the spatial Riemann–Louville derivative or Riesz derivative for superdiffusion.

Recently, anomalous diffusion is studied (cf. [14]) by fractal derivatives giving the fundamental solutions which show
clear power law characteristics. It is given fractal derivative modelling of anomalous diffusion

Dβt u(x, t) = d∂αx u(x, t), t > 0, 0 < β, α ≤ 2, u(x, 0) = δ(x), −∞ < x < ∞.

Fractal and fractional derivatives are two important approaches in modelling of anomalous diffusion. The fractal derivative
has local properties like entire derivatives and it is simpler and computationallymore efficient than the fractional derivative
which has global properties. The fractal model is slower at the initial period but faster in the long-term evolution than the
fractional model and possesses different symmetry of the diffusion.

Finally, in [9], the diffusion-wave phenomena are described with applications in physics, related to the sub-diffusion
with retardation studied in [2],

b1Dβ1∗
u(x, t)+ b2Dβ2∗

u(x, t) = k2∂2x u(x, t), 0 < β1 < β2 ≤ 1, b1, b2 > 0, b1 + b2 = 1, (3)
and its generalization to n-time fractional equations obtained by setting finite sum of delta distributions as weight function
p(β) =

∑m
i=0 biδ(β − βi), where i < βi ≤ i + 1, i = 0, 1, . . . ,m − 1, into the diffusion-wave problem of the distributed

order (5)–(6) i.e. the equation

b0Dβ0∗
u(x, t)+

m−1−
i=1

biDβi∗
u(x, t)+ bmDβm∗

u(x, t) = k2∂2x u(x, t), t ∈ (0, T ), (4)

where x ∈ Rn, b0, . . . , bm ∈ R+, which is the generalization to the problem (3).
In this paper we give a numerical method for solving Eqs. (3) respectively (4), based on orthogonal polynomials of the

Laguerre type. It is only the description of how themethodworks. Note that all equations from this Section 1.1 can be solved
in 1D by the method of the approximation of the tempered convolution. Many temporal–spatial fractional equations with
fractional and entire derivatives have a solution by this method if the spatial variable has a dimension one. The method is
applicable for the nonlinear equations of this type and the nonlinear equations with the forcing term of the corresponding
growth. The application to nonlinear problems whose nonlinear term is of the Lipschitz’s class is also possible. Nonlinear
time fractional diffusion-wave equations obtained by perturbing the equationwith nonlinear terms, singular distribution, or
stochastic processes (say, fractional derivative of the Brownianmotion) also have a solution as an application of thismethod.
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