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a b s t r a c t

Explicit multi-stage solvers are routinely used to solve the semi-discretized equations that
arise in Computational Fluid Dynamics (CFD) problems. Often they are used in combination
with multi-grid methods. In that case, the role of the multi-stage solver is to efficiently
reduce the high frequency modes on the current grid and is called a smoother. In the past,
when optimizing the coefficients of the scheme, only the damping characteristics of the
smoother were taken into account and the interaction with the remainder of the multi-
grid cycle was neglected. Recently it had been found that coefficients that result in less
damping, but allow for a higher Courant–Friedrichs–Lewy (CFL) number are often superior
to schemes that try to optimize damping alone. While this is certainly true for multi-stage
schemes used as a stand-alone solver, we investigate in this paper if using higher CFL
numbers also yields better results in a multi-grid setting. We compare the results with
a previous study we conducted and where a more accurate model of the multi-grid cycle
was used to optimize the various parameters of the solver.

We show that the use of the more accurate model results in better coefficients and that
in a multi-grid setting propagation is of little importance.

We also look into the gains to be made when we allow the parameters to be different
for the pre- and post-smoother and show that even better coefficients can be found in this
way.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Explicit multi-stage schemes are commonly used to solve ordinary differential equations resulting from the space
discretization of partial differential equations. When used as a stand-alone solver, such a scheme can either be designed
for high order accuracy or to reach steady state quickly when the order of accuracy is less important. As it can easily be
shown that low frequency error components are difficult to damp, a multi-stage scheme that improves the propagation of
these components generally yields a faster solver; a characteristic of these solvers is the higher CFL number.

When amulti-stage iteration is used in conjunctionwithmulti-grid, the aim is to reduce those low frequency components
on a coarser grid; if the number of nodes on the coarser grid is low, a direct solution on that grid can be cost-effective.
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The multi-stage solver is then often designed to eliminate the high frequency components of the error (which cannot be
represented on the coarser grid) and is called a smoother. In the past, these coefficients have been optimized by trial and
error [1] or by geometric methods [2].

These and other studies [3–5] focused on minimizing the smoothing factor over the high frequency domain. Still, it was
realized that designing the multi-stage scheme to be an optimal smoother, as would be desirable for multi-grid to work,
would not result in an optimal (i.e. fastest) overall scheme, but that some precedence had to be given to the propagative
behavior [6]. Recently the optimization of the damping and propagative efficiencies was expressed within the framework
of constrained non-linear optimization [7]. Different objective functions with a variety of constraints were constructed on a
heuristical basis and their effect on the convergence rate of the numerical schemewas studied. Multi-stage coefficients that
are comparable with values used in the past were found.

In [8] we chose to look at a complete 2-grid cycle which closely modeled the interaction between multi-stage solver,
defect correction, restriction and prolongation. Multi-stage solvers with an improved performance were found, although
their smoothing capacity was sacrificed to some extent.

In this paper we refine the model established in [8] by also looking at the propagation characteristics. Again we are only
interested in reaching convergence quickly using a multi-grid scheme, and therefore focus on the multi-stage scheme for
which the 2-grid cycle will remove all frequencies as quickly as possible, either by propagation or by damping. We focus
on the 1 dimensional advection equation; this limitation is justified, as Hosseini and Alonso [7] have shown that 1D wave
equations can serve as a good indication of the performance of real flow solvers.

This paper is organized as follows. In Section 2 we formulate the equation under consideration, the Fourier footprints of
the space discretizations and the transmittance function of themulti-stage time-stepping scheme; in Section 3wemodel the
remainder of the 2-grid cycle and give the transmittance function of its components; in Section 4we deduce the propagation
and damping that results from a transmittance function and formulate the analytical framework for optimization; in
Section 5 the results are analyzed in two cases: identical or different parameters for pre- and post-smoother.

Remark. We use i as a symbol for the complex unit (=
√

−1) and i as an index.

2. The model: the scalar 1D advection equation

2.1. General formulation

We are interested in the advection equation

∂u
∂t

+ a
∂u
∂x

= 0 (1)

to which we add a suitable boundary condition, which in our case are the inlet value of u. Applying a given space
discretization to (1) on an equidistant mesh with N nodes results in the semi-discretized nodal equation (j = 1, . . . ,N):

dũj

dt
+ řj = 0 (2)

where the space discretization operator řj, which is a residual for the steady state solution, is of the form

řj =

k+−
k=k−

βj+kũj+k (3)

where k− and k+ depend on the stencil that is used for the space discretization.
If uexact,j, is the solution to (2), we can write uj = uexact,j + ej, where ej is the (nodal) error of uj with respect to uexact,j.
Eq. (2) can then be transformed into the form

dẽj
dt

+

k+−
k=k−

βj+kẽj+k  
rj

= 0. (4)

We assume that [ẽ1 ẽ2 · · · ẽN ] can be written as an infinite sum of Fourier modes, of which we now only consider the
p-th: ẽj,p = êp(t)eijp1x (j = 1, . . . ,N). A similar expression will be used for rj. Alternatively, when introducing the phase
angle θ = p1xwe get ẽj,θ = êθ (t)eijθ with θ ∈ [−π, π] (j = 1, . . . ,N).

Inserting this in Eq. (4) we get an expression for the amplitude of the error êθ of the form

dêθ

dt
= −r̂θ = λ(θ)êθ (5)
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