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1. Introduction

Fractional partial differential equations (PDEs) have wide applications in the real world (see e.g.,in [1,2] and [3]) and thus
the solutions of the equations become increasingly popular (see e.g., in [1,4-6] and the listed references). In this paper, we
study one type of time-fractional PDEs, which can be obtained from the standard parabolic PDEs by replacing the first-order
time derivative with a fractional derivative of order o, 0 < @ < 1. More precisely, we consider

%u(x,t)  d*u(x,t)

=fxt), (1) €[0,1]x[0,T] (1)
at* ox?
subject to the initial and boundary conditions:
u,0) =upx), xel=1[0,1], (2)
u@©,t) =u(1,t) =0, te(0,T], (3)

where 0 < o < 1, f and ug are given smooth functions and % is Caputo fractional derivative defined by

%u(x, t) 1 /f du(x,s) ds
atr Il —aw)Jy ds (t—s)

* The work was supported by the National Natural Science Foundation of China (Grant No. 10901027).
* Corresponding author.
E-mail addresses: jiangyingjun@csust.edu.cn (Y. Jiang), mjt@swufe.edu.cn (J. Ma).

0377-0427/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2011.01.011


http://dx.doi.org/10.1016/j.cam.2011.01.011
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:jiangyingjun@csust.edu.cn
mailto:mjt@swufe.edu.cn
http://dx.doi.org/10.1016/j.cam.2011.01.011

3286 Y. Jiang, J. Ma / Journal of Computational and Applied Mathematics 235 (2011) 3285-3290

The analytical solutions of the time-fractional PDEs are studied using Green's functions or Fourier-Laplace transforms (see
e.g., in [1,7-9]). However, the references for the numerical methods are very limited. Most existing methods are lower-
order methods, for example, Liu et al. [10] study the first-order finite difference methods; Scherer et al. [11] develop
Griinwald-Letnikov’s approach (a variant of finite difference method), analyze the stability and discuss the convergence
rates.

As pointed out in paper [12], it is necessary to develop high-order methods due to the fractional term. High-order
methods—spectral methods are studied by Lin and Xu [12]. Lin and Xu [12] (in Theorem 4.2, 4.3) show that the methods for
a-order time-fractional partial differential equations with 0 < & < 1have convergence rate 0(At?>~* +N""/(At)%), where
m measures the regularity of the solution in space. Obviously the convergence rates in their paper are not optimal due to the
impairment of the factor (At)~“. In this paper, we use high-order finite element methods to solve the same equation and
prove an optimal convergence rate. Since the finite element methods use piecewise polynomial bases not like the spectral
methods using global polynomial bases, the finite element methods are much easier to implement.

In the rest of the paper, we assume that the solution u is sufficiently smooth. We use the following norms: [[v[| = [[v][;2(,
and ||v|l; = |lv||lra). C denotes a generic positive constant that is independent of mesh but depends on the smoothness
of u.

2. High-order finite element methods

Let T = T/L be the time meshsize, t, = nt,n =0, 1, ..., L be mesh points and t,_q, = % n=1,2,...,L bemid
mesh points, where L is a positive integer. The time-fractional derivative aagé’;’t) at t, is estimated by
U, tn) 1 u /“k du(x,s) ds
at* Frl—a) &= Jy, 09 (tn—9)"
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where b, = (k+ 1)'=% — k=% and

% Ju(x,s) ds 1 u(x, ty—1/2) ds
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Let h = 1/N and use the uniform space mesh with mesh points
xi=ih, i=0,1,...,N.

Denote Sy, the set of piecewise polynomials of degree at most r — 1 on mesh {x;}. Define Ritz projection R;, from H(} (I) into
Sh by the orthogonal relation

a(Ryv, x) = a(v, x), Vx €Sy, v e Hy().

Define

R ,thek) — R s bnk—
2 x) = F(2— Zbk( uX, th—k—1/2) — (%, tni) " (%, toy 1))-

Then combining with (4), we have

+ ¥ (), (3)

"uX, tn) E Rpu(x, th—t) — Rptu(X, th—r—1)
ot 1"(2 —a 2™ T

with y(0) = 74 (%) + y” ().
The weak form of (1)-(3) is given by

8(1
(at“u ¢) +a, ¢) = (f,¢), Vo €Hy), (6)
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