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a b s t r a c t

A stochastic ratio-dependent predator–prey model is investigated in this paper. By the
comparison theorem of stochastic equations and Itô’s formula, we obtain the global
existence of a positive unique solution of the ratio-dependent model. Besides, a condition
for species to be extinct is given and a persistent condition is established.We also conclude
that both the prey population and the ratio-dependent function are stable in time average.
In the end, numerical simulations are carried out to confirm our findings.
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1. Introduction

The dynamic relationship between predators and their prey has long been and will continue to be one of the dominant
themes in both ecology and mathematical ecology due to its universal existence and importance [1]. The classical models
aremostly variations of the Lotka (a physical chemist)–Volterra (amathematician)model which is the product of chemistry,
physics and mathematics. Specially, it is the product of the (chemistry) principle of mass action, (physics) laws of conserva-
tion, and (mathematics) elemental differential equations. Obviously, the biological content is themissing link. Inevitably, the
traditional models have been challenged by several biologists (see, for example, [2–4]) based on the fact that functional and
numerical responses over typical ecological timescales ought to depend on the densities of both predators and prey (most
likely and simply on their ratio), especially when predators have to search for food (and therefore have to share or compete
for food). Such a functional response is called a ratio-dependent response function and these hypotheses have been strongly
supported by numerous fields and laboratory experiments and observations [2,3,5–7]. Based on the Michaelis–Menten or
Holling type II function, Arditi and Ginzburg [2] first proposed a ratio-dependent function of the form
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and the following ratio-dependent predator–prey model:
ẋ(t) = x(t)


a − bx(t)−

cy(t)
my(t)+ x(t)


,

ẏ(t) = y(t)


−d +
fx(t)

my(t)+ x(t)


.

(1.1)

Here, x(t) and y(t) represent population densities of the prey and the predator at time t , respectively; parameters a,
b, c, d, f ,m are positive constants in which a/b is the carrying capacity of the prey, a, c,m, f , d stand for the prey intrinsic
growth rate, capturing rate, half capturing saturation constant, conversion rate and the predator death rate, respectively.
In resent years, several authors have studied the ratio-dependent predator–prey model (1.1) and its extension and have
observed rich dynamics, for example, see [8–15].

On the other hand, population systems are often affected by environmental noise, and hence stochastic differential
equation models play a significant role in various branches of applied sciences including biology and population dynamics,
as they provide some additional degree of realism compared to their deterministic counterpart [16,17]. In reality, due to
continuous fluctuations in the environment (e.g. variation in intensity of sunlight, temperature,water level, etc.), parameters
involved in models are not absolute constants, but they always fluctuate around some average value. As a result the
population density never attains a fixed value with the advancement of time but rather exhibits continuous oscillation
around some average values. Based upon these factors, stochastic populationmodels have receivedmore andmore attention
[18–20]. To the best of our knowledge a small amount of work has been done with the stochastic ratio-dependent
prey–predator models. In [21], they assumed that stochastic perturbations of the state variables were σ1(x − x∗)Ḃ1(t)
and σ2(y − y∗)Ḃ2(t), where (x∗, y∗) is the positive equilibrium point of system (1.1), Ḃ1(t) and Ḃ2(t) are white noises, and
they showed that the corresponding stochastic model is asymptotically mean square stable. While in [22], considering that
fluctuations in the environment would manifest themselves mainly as fluctuations in the intrinsic growth rate of the prey
population and in the death rate of the predator population [23], they supposed parameters a and dwere perturbed with

a → a + αḂ1(t), d → d + βḂ2(t),

where B1(t) and B2(t) are mutually independent Brownian motions, α and β represent the intensities of the white noises.
Then the stochastic ratio-dependent predator–prey model took the following form:

dx(t) = x(t)

a − bx(t)−

cy(t)
my(t)+ x(t)


dt + αx(t)dB1(t),

dy(t) = y(t)


−d +
fx(t)

my(t)+ x(t)


dt − βy(t)dB2(t).

(1.2)

By Laplace transform methods for stochastic differential equation model, they [22] calculated population fluctuation
intensity (variance) for prey and predator species. But for population dynamics, we are more interested in the persistence
and extinction of the system. As mentioned above, ratio-dependent predator–prey systems without stochastic perturbation
have been well studied and much richer dynamics found. They [13] especially showed system (1.1) has equilibria
(0, 0), ( ab , 0) and a unique positive equilibrium E∗

= (x∗, y∗) = (
cd−f (c−ma)

bfm ,
f−d
dm x∗). System (1.1) is permanent if

f > d and ma > c, (1.3)

while if

cm−1 > a + d, (1.4)

then system (1.1) is not persistent, and

lim
t→+∞

(x(t), y(t)) = (0, 0).

Motivated by this, in this paper we mainly attempt to consider system (1.2), which inherits a similar property of the
deterministic system, and a property which is not.

This paper is organized as follows. In Section 2, by Itô’s formula and the comparison theorem of stochastic equations, we
show that system (1.2) has a unique positive solution (x(t), y(t)) a.s. with any initial value x(0) = x0 > 0, y(0) = y0 > 0.
Besides, we also find that both the prey population and the predator population of system (1.2) are bounded in mean. In
Section 3, we establish if
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then both the prey population x(t) and the ratio-dependent equation P( xy ) are stable in time average. That is
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