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a b s t r a c t

The efficient and accurate calculation of sensitivities of the price of financial derivatives
with respect to perturbations of the parameters in the underlying model, the so-called
‘Greeks’, remains a great practical challenge in the derivative industry. This is true
regardless of whether methods for partial differential equations or stochastic differential
equations (Monte Carlo techniques) are being used. The computation of the ‘Greeks’ is
essential to risk management and to the hedging of financial derivatives and typically
requires substantially more computing time as compared to simply pricing the derivatives.
Any numerical algorithm (Monte Carlo algorithm) for stochastic differential equations
produces a time-discretization error and a statistical error in the process of pricing financial
derivatives and calculating the associated ‘Greeks’. In this article we show how a posteriori
error estimates and adaptive methods for stochastic differential equations can be used to
control both these errors in the context of pricing and hedging of financial derivatives.
In particular, we derive expansions, with leading order terms which are computable in a
posteriori form, of the time-discretization errors for the price and the associated ‘Greeks’.
These expansions allow the user to simultaneously first control the time-discretization
errors in an adaptive fashion, when calculating the price, sensitivities and hedging
parameters with respect to a large number of parameters, and then subsequently to ensure
that the total errors are, with prescribed probability, within tolerance.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is fair to say that it is still a great practical challenge in the derivative industry to efficiently and accurately
calculate the so-called ‘Greeks’, that is sensitivities of the price of financial derivatives with respect to perturbations of the
parameters in the underlyingmodel. Focusing onmethods based on stochastic differential equations, the calculation of these
sensitivities remains a particularly topical area of current research and the prevailing techniques include finite difference
approximations, pathwise derivative estimates, the likelihood ratio method and its generalizations using the Malliavin
calculus. We refer to [1] for an excellent account of thesemethods and their advantages and disadvantages. Although [2,1,3]
containmost of the relevant references on these topics we here still would like to suggest [4–14] as additional references for
the interested reader. We emphasize that while these articles are almost exclusively devoted to financial applications, the
techniques developed are also useful inmany other contexts.Moreover, we note that a key feature of the techniques inmany
of these articles is, heuristically, that the computations tend to be organized in a forward lookingwaywhere the calculations
in the next step depend on the calculations up to the present. However, in [3] an adjoint formulation for the calculation of
sensitivities is suggested and it is shown, numerically, that this formulation can be used to accelerate the calculation of
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the ‘Greeks’. The method outlined in [3] is particularly well suited in applications requiring sensitivities to a large number
of parameters and particular examples of such applications include interest rate derivatives requiring sensitivities with
respect to all initial forward rates and equity derivatives requiring sensitivities with respect to all points on a volatility
surface. Furthermore, as emphasized in [3] the adjoint method has its advantages, compared to competing methods with
forward looking features, when calculating the sensitivities of a small number of securities with respect to a large number
of parameters. On the contrary, competing methods with forward looking features are advantageous when calculating the
sensitivities of many securities with respect to a small number of parameters. The notion of ‘small number of securities’ can
here be an entire book, consisting of many individual securities, as long as the sensitivities to be calculated are for the book
as a whole and not for the constituent securities.
In this article we further develop the adjoint method suggested in [3] by outlining how a posteriori error estimates and

adaptive methods for stochastic differential equations can be used to adaptively first control the time-discretization errors
in these calculations and then to ensure that the total error, defined as sumof the time-discretization error and the statistical
error, is, with prescribed probability, within tolerance. In particular, we give a theoretically sound base for the adjoint
method suggested in [3]. Our results concerning a posteriori error estimates and adaptivemethods for stochastic differential
equations build and expand on the work by Szepessy et al. [15] concerning adaptive weak approximations of stochastic
differential equations and, to our knowledge, a posteriori error estimates for stochastic differential equations applied to the
pricing of financial derivatives and, in particular, applied to the calculation of hedging parameters for financial derivatives,
have previously not been discussed in the literature. Hence,we claim to give a novel contribution to the literature concerning
the numerical aspects of pricing and hedging of financial derivatives, as well as to the general problem of conducting
sensitivity analysis for solutions of second order parabolic partial differential equations using stochastic techniques. Finally,
this article is based on the results developed in the thesis of the second author, see [16].
To more thoroughly describe the methodology outlined in this article we first have to introduce some notation. Let

(t, x) = (t, x1, . . . , xn) ∈ R+ × Rn and let M(n,R) be the set of all n × n-matrices with real valued entries. Given a
matrix σ ∈ M(n,R) its transpose is denoted by σ ∗. Let

µ(t, x) = µ(t, x, θµ) = µ̄(t, x)+ θµµ̃(t, x),

σ (t, x) = σ(t, x, θσ ) = σ̄ (t, x)+ θσ σ̃ (t, x), (1.1)

where µ̄, µ̃ : R+ × Rn → Rn, σ̄ , σ̃ : R+ × Rn → M(n,R), θµ ∈ R, θσ ∈ R, and |θµ| ≤ ε, |θσ | ≤ ε, for some small ε > 0.
µ̃ and σ̃ represent perturbations of µ̄ and σ̄ . In the following we assume that there exists η > 0 such that the following
ellipticity condition is satisfied,

ξ ∗(σ̄ (t, x)+ θσ σ̃ (t, x))(σ̄ (t, x)+ θσ σ̃ (t, x))∗ξ ≥ η|ξ |2, (1.2)

whenever |θσ | ≤ ε, ξ ∈ Rn and (t, x) ∈ R+ × Rn. The ellipticity condition in (1.2) is not crucial to the analysis outlined
in this article. In fact, the more general assumption of hypoellipticity suffices as discussed at the end of the article. Define
θ = (θµ, θσ ) and let, for i ∈ {1, . . . , n},

Xi(t) = Xi(t, θ) = xi +
∫ t

0
µi(s, X(s), θ)ds+

n∑
j=1

∫ t

0
σij(s, X(s), θ)dWj(s). (1.3)

Let X(t) = (X1(t), . . . , Xn(t))∗ denote the corresponding vector. Here (W (t))0≤t≤T , W (t) = (W1(t), . . . ,Wn(t))∗, is a
standard Brownian motion in Rn defined on a filtered probability space (Ω,F , (Ft)0≤t≤T , P) with the usual assumptions
on (Ft)0≤t≤T . By a standard Brownianmotion inRnwemean a processwhose components are independent one-dimensional
Brownian motions. In the definition of Xi(t) = Xi(t, θ) we have indicated the dependence on the parameter vector
θ = (θµ, θσ ). Assuming appropriate growth and regularity conditions on the coefficients µi and σij, as will be discussed
in detail below, the system in (1.3) has a unique strong solution for all parameters θ = (θµ, θσ ), |θµ| ≤ ε, |θσ | ≤ ε. We
recall that there is a well-known close connection between stochastic differential equations and second order parabolic
partial differential equations. We therefore introduce the second order parabolic operator

L =
1
2

n∑
i,j=1

[σσ ∗]ij(t, x)∂ij +
n∑
i=1

µi(t, x)∂i, (1.4)

and we note that the structural assumption on the operator L, imposed by (1.2), is that the operator ∂t + L is uniformly
elliptic–parabolic. Let T > 0 and let the function g : Rn → R be given. Define

u(t, x) = u(t, x, θ) = u(t, x, (θµ, θσ )) = E[g(X(T , θ))|X(t, θ) = x]. (1.5)

Then, under appropriate smoothness and growth conditions onµi, σij and g , the Feynman–Kac formula asserts that u in (1.5)
is the unique solution to the Cauchy problem{

∂tu(t, x)+ Lu(t, x) = 0, whenever (t, x) ∈ (0, T )× Rn,
u (T , x) = g(x), whenever x ∈ Rn, (1.6)
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