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a b s t r a c t

In this paper we analyze a characteristic finite element approximation of convex optimal
control problems governed by linear convection-dominated diffusion equations with
pointwise inequality constraints on the control variable, where the state and co-state
variables are discretized by piecewise linear continuous functions and the control variable
is approximated by either piecewise constant functions or piecewise linear discontinuous
functions. A priori error estimates are derived for the state, co-state and the control.
Numerical examples are given to show the efficiency of the characteristic finite element
method.
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1. Introduction

Optimal control problems governed by convection–diffusion equations arise in many scientific and engineering
applications, such as atmospheric pollution control problems [1,2]. Efficient numerical methods are essential to successful
applications of such optimal control problems. To the best of my knowledge, there are only a few published results on
optimal control problems governed by steady convection–diffusion equations; see [3] of SUPGmethod, [4] of standard finite
element discretizations with stabilization based on local projection method, [5] of symmetric stabilization method; [6] of
edge-stabilization method and [7] of the application of RT mixed DG scheme. For the approximation of constrained optimal
control problems governed by time-dependent convection–diffusion equations, it is much more complicated and there are
nearly no related papers published so far. Systematic introductions of the finite elementmethod for PDEs and optimal control
problems can be found in, for example, [8–13].
In this paper we consider the following linear-quadratic optimal control problems for the state variable y and the control

variable u:

min
u∈K

1
2

∫ T

0

(
‖y− zd‖20,Ω + α‖u‖

2
0,ΩU

)
dt, (1.1)

subject to{yt + v · ∇y− div(A∇y) = f + Bu, (x, t) ∈ Ω × (0, T ],
y(x, t) = 0, (x, t) ∈ ∂Ω × [0, T ],
y(x, 0) = y0(x), x ∈ Ω,

(1.2)
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and

ξ1 ≤ u(x, t) ≤ ξ2, (x, t) ∈ ΩU × (0, T ], (1.3)

where v = v(x, t) denotes a velocity field in the flow control, A = A(x, t) is a diffusion coefficient, f = f (x, t) accounts for
external sources and sinks, B is a linear continuous operator, and y0(x) is a prescribed initial data. In our case, we assume
that the convection term dominates the diffusion term. A precise formulation of this problem including a functional analytic
setting is given in the next section.
The methods of characteristics [14–16] combine the convection and capacity terms in the governing equations to

carry out the temporal discretization in a Lagrange coordinate. These methods symmetrize the governing equation and
stabilize their numerical approximations. They generate accurate numerical solutions and significantly reduce the numerical
diffusion and grid-orientation effect present in upwindmethods, even if large time steps and coarse spatial meshes are used.
The goal of the present paper is to apply the methods of characteristics to the quadratic optimal control problems governed
by linear convection-dominated diffusion equations, and we obtain a priori error estimates for both the control and state
approximations. The present paper extends [17] in two aspects: First, it deals with either piecewise linear elements or
piecewise constant elements for the control approximation. Second, the error estimates are obtained in the framework of
L2-error and bilateral pointwise inequality control constraints. The results obtained and the techniques used here are also
different from that of [17].
The rest of the paper is organized as follows: In Section 2, we first refine the statement of the model problem and then

derive a generic weak formulation and optimality conditions. In Section 3, we construct a characteristic finite element
approximation scheme for the optimal control problems. In Section 4, the main error estimates are derived for the control
problems with obstacle constraints. In Section 5, we conduct some numerical experiments to observe the convergence
behavior of the numerical scheme. Section 6 contains concluding remarks.
In this paper, we denote C and δ be a generic constant and small positive number which are independent of the discrete

parameters and may have different values in different circumstances, respectively.

2. Optimal control problems and optimality conditions

Let Ω and ΩU be bounded open sets in R2, with Lipschitz boundaries ∂Ω and ∂ΩU . Just for simplicity of presentation,
we assume thatΩ andΩU are convex polygon. We employ the usual notion for Lebesgue and Sobolev spaces; see [8,9] for
details.
Nowwe give a description of themathematicalmodel of the optimal control problems governed by convection–diffusion

equations. To fix the idea, let I = (0, T ] and we shall take the state spaceW = H1(I; V )with V = H10 (Ω), the control space
X = L2(I;U) with U = L2(ΩU), and the observation space Y = L2(I;H) with H = L2(Ω). B is a linear continuous operator
from U to H , and K is a closed convex set in X .
Let 0 = t0 < t1 < t2 < · · · < tNT = T be a subdivision of I , with corresponding time intervals In = (tn−1, tn] and time

steps kn = tn − tn−1, n = 1, 2, . . . ,NT . Denote k = max1≤n≤NT kn and f
n
= f (tn). We define, for 1 ≤ q < ∞, the discrete

time-dependent norms

‖f ‖lq(I;X) =

(
NT∑
n=1

kn‖f n‖
q
X

) 1
q

and the standard modification for q = ∞. Let

lq(I; X) :=
{
f : ‖f ‖lq(I;X) <∞

}
, 1 ≤ q ≤ ∞.

In problems (1.1)–(1.3), α is a positive constant, the bounds ξ1, ξ2 are two real numbers that fulfill ξ1 < ξ2, f ∈ L2
(I; L2(Ω)), zd ∈ H1(I; L2(Ω)), y0 ∈ V = H10 (Ω), and

A(x) = (ai,j(x))2×2 ∈ (W 1,∞(Ω̄))2×2,

such that there is a positive constant c satisfying

2∑
i,j=1

ai,j(x)ξiξj ≥ c|ξ |2, ∀ξ ∈ R2.

The velocity field vector v = (V1(x, t), V2(x, t)) lies in the function space L∞(I;W 1,∞(Ω̄)2) and is divergence-free, i.e.,

∇ · v = 0, ∀x ∈ Ω, t ∈ I.

To avoid technical boundary difficulties associate with the methods of characteristics, we assume that Ω is a rectangle
and the state equation isΩ-periodic, i.e., we assume that all functions in Eq. (1.2) are spatiallyΩ-periodic; see, [14,15] for
example.
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