
Journal of Computational and Applied Mathematics 234 (2010) 2578–2586

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Maximum norm error estimates of the Crank–Nicolson scheme for
solving a linear moving boundary problemI

Wan-Rong Cao a,b,∗, Zhi-Zhong Sun a
a Department of Mathematics, Southeast University, Nanjing 210096, PR China
b School of Automation, Southeast University, Nanjing 210096, PR China

a r t i c l e i n f o

Article history:
Received 19 November 2009
Received in revised form 15 March 2010

Keywords:
Moving boundaries
Crank–Nicolson scheme
Energy analysis
Stability
Convergence

a b s t r a c t

The Crank–Nicolson scheme is considered for solving a linear convection–diffusion
equation with moving boundaries. The original problem is transformed into an equivalent
systemdefined on a rectangular region by a linear transformation. Using energy techniques
we show that the numerical solutions of the Crank–Nicolson scheme are unconditionally
stable and convergent in the maximum norm. Numerical experiments are presented to
support our theoretical results.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Moving boundary problems occur in themathematical modelling of many physical processes involving diffusion, such as
themovement of the shoreline in a sedimentary ocean [1], the drift and collection of oil [2], heat conduction across the solid
from a liquid–solid interface to the cooled surface [3] etc. Moving boundary problems also exist in the swelling of biological
tissues [4,5] and the swelling of polymers [6].
Due to the difficulties in obtaining analytical solutions, it is important to develop numerical methods for moving

boundary problems. Recently, more finite difference schemes have been used for dealing with moving boundary
problems [7–10], but there are no analyses of the convergence and stability of difference schemes. In addition, Baines
and Hubbard [11] established a moving mesh finite element algorithm for moving boundary problems. Immersed interface
methods and immersed boundary methods also have been used to deal with moving boundary problems [12–14].
The linear convection–diffusion equation
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(
au− κ

∂u
∂x

)
= g(x, t), (x, t) ∈ QT (1.1)

along with the initial value condition

u(x, 0) = u0(x), x ∈ Ω0, (1.2)

and the moving boundary value conditions

u(x, t) = Φ(x, t), x ∈ ∂Ωt , 0 < t ≤ T (1.3)
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as a mathematical model is widely used in various applications, where QT =
{
(x, t) ∈ R2, x ∈ Ωt , t ∈ [0, T ]

}
, Ωt is an

interval in R for each t ∈ [0, T ], a and κ are two positive constants.
Movingmeshmethod is very effective for dealingwithmoving boundary problems.Mackenzie andMekwi [15] discussed

the stability and convergence of time integration schemes for the solution of (1.1)–(1.3) (they took g(x, t) = Φ(x, t) = 0).
Using variable mesh method and energy techniques they showed that the backward Euler scheme is unconditionally stable
in a mesh-dependent L2 norm, but the Crank–Nicolson scheme is only conditionally stable.
Sun [2] gave a three-level linearized and weak coupled difference scheme using a moving mesh for the model of oil drift

and collection with moving boundary value, and analyzed the solvability and convergence of the difference scheme. He
proved that the convergence order of the difference scheme is O(τ 2 + h2).
In this article, the Crank–Nicolson scheme for the linear convection–diffusion equation with moving boundaries

(1.1)–(1.3) is analyzed. A linear transformation is introduced in our analysis to transform (1.1) to an equivalent equation
defined on a rectangle region. It is proved that the Crank–Nicolson scheme for (1.1)–(1.3) is unconditionally stable and
convergent in the maximum norm. The convergence order is O(τ 2 + h2).
The contents will be organized as follows. In the next section, an equivalent system defined on a rectangular region is

achieved by making a linear transformation to Eq. (1.1). Mesh generation and some notations are also introduced in this
section. The Crank–Nicolson scheme is constructed for the equivalent system in Section 3. Section 4 presents the energy
analysis for the Crank–Nicolson scheme and gives the main results of the article. Numerical experiments are provided to
support our theoretical results in Section 5.

2. A linear transformation and mesh generation

Assume that the initial value u0 and exterior force g are regular enough in (1.1)–(1.3), the boundary valueΦ is piecewise
smooth, u0(x) = Φ(x, 0), x ∈ ∂Ω0, and the domain Ωt can be defined as Ωt = [xl(t), xr(t)], where the functions
xl(t), xr(t) ∈ C1[0, T ], and xl(t) < xr(t) for every t ∈ [0, T ].
Introduce a linear transformation{

x = (1− ξ)xl(t)+ ξxr(t), 0 ≤ ξ ≤ 1
t = t, 0 ≤ t ≤ T (2.1)

and denotew(ξ, t) = u ((1− ξ)xl(t)+ ξxr(t), t) , G(ξ , t) = g ((1− ξ)xl(t)+ ξxr(t), t). Then we have
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(2.2)

It is obvious that

xξ (t) = xr(t)− xl(t) > 0, xξξ (t) = 0. (2.3)

Performing in (1.1)–(1.3) the substitution (2.1) and then using (2.2)–(2.3) we obtain
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∂ξ
= G(ξ , t), (ξ , t) ∈ QR, (2.4)

along with the initial value condition

w(ξ, 0) = w0(ξ), 0 ≤ ξ ≤ 1 (2.5)

and the boundary value conditions

w(0, t) = φ1(t), w(1, t) = φ2(t), 0 < t ≤ T (2.6)

where QR =
{
(ξ , t) ∈ R2, 0 ≤ ξ ≤ 1, 0 < t < T

}
, w0(ξ) = u0 ((1− ξ)xl(0)+ ξxr(0)), φ1(t) = Φ (xl(t), t), φ2(t) =

Φ (xr(t), t).
Summarizing above results, we obtain the following theorem.

Theorem 1. Assume that the interval Ωt can be defined as Ωt = [xl(t), xr(t)], where the functions xl(t), xr(t) ∈ C1[0, T ]. If
xl(t) < xr(t) for every t ∈ [0, T ], then the problem (1.1)–(1.3) is equivalent to (2.4)–(2.6).

Let

Ωh(t) ≡ {xi(t) | xi(t) = ih(t), 0 ≤ i ≤ M}

be a variable mesh of the intervalΩt = [xl(t), xr(t)]with h(t) = 1
M [xr(t)− xl(t)], where t ∈ [0, T ] is fixed. Let

Ω̃h ≡ {ξi | ξi = ih, 0 ≤ i ≤ M}
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