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a b s t r a c t

A Helmholtz equation in two dimensions discretized by a second order finite difference
scheme is considered. Krylov methods such as Bi-CGSTAB and IDR(s) have been chosen
as solvers. Since the convergence of the Krylov solvers deteriorates with increasing wave
number, a shifted Laplacemultigrid preconditioner is used to improve the convergence. The
implementation of the preconditioned solver on CPU (Central Processing Unit) is compared
to an implementation on GPU (Graphics Processing Units or graphics card) using CUDA
(Compute Unified Device Architecture). The results show that preconditioned Bi-CGSTAB
on GPU as well as preconditioned IDR(s) on GPU is about 30 times faster than on CPU for
the same stopping criterion.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Initially driven by the gamer market, GPUs (Graphics Processing Units) recently became suitable for high performance
computing applications. A GPU or simply a graphics card is a multi-threaded, many-core processor which was originally
developed for graphics processing.With the evolution of General Purpose computing on Graphics Processing Units (GPGPU)
it became possible to accelerate a wide range of applications traditionally computed on a CPU (Central Processing Unit).
One of the market leaders, Nvidia, developed a parallel computer architecture called CUDA (Compute Unified Device
Architecture); see [1]. CUDA is a subset of the C languagewith some extensions which allows us to program the Nvidia GPUs
in an easyway. Themore recent initiative of Applewithin Khronos Group is called OpenCL (Open Computing Language), that
is an open standard and can be used to program CPUs, GPUs and other devices from different vendors. It has been shown
that converting a CUDA program to an OpenCL program involves minimal modifications; see [2]. According to Du et al. [3],
at this moment CUDA is more efficient on the GPU than OpenCL.

In this paper we focus on iterative solvers for the Helmholtz equation in two dimensions on GPU using CUDA. The
Helmholtz equation represents the time-harmonic wave propagation in the frequency domain and has applications inmany
fields of science and technology, e.g. in aeronautics, marine technology, geophysics, and optical problems. In particular we
consider the Helmholtz equation discretized by a second order finite difference scheme. The size of the discretization grid
depends on thewave number, thatmeans, the higher thewave number themore grid points are required. For instance to get
accurate results with 7-point discretization scheme in three dimensions, at least 10 grid points per wave length have to be
used; see [4]. For highwave numbers the discretization results in a very large sparse systemof linear equationswhich cannot
be solved with direct methods on current computers within reasonable time. The linear system is symmetric but indefinite,
non-Hermitian and ill-conditioned which brings difficulties when solving with basic iterative methods. The convergence of
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the Krylov methods deteriorates with increasing wave number, so the need for preconditioning becomes obvious. In this
paper we consider Bi-CGSTAB (see [5]) and IDR(s) (see [6]) as Krylov solvers.

There have been many attempts to find a suitable preconditioner for the Helmholtz equation, see, for example, [7,8].
Recently the class of shifted Laplace preconditioners evolved, see [9–12]. In thiswork,we focus on a shifted Laplacemultigrid
preconditioner introduced in [11,13], to improve the convergence of the Krylov methods.

The purpose of this work is to compare the implementations of the Krylov solver preconditioned by the shifted Laplace
multigrid method in two dimensions on a CPU and a GPU. The interest is triggered by the fact that some applications on
GPU are 50–200 times faster compared with a CPU implementation (see e.g. [14,15]). However there are no recordings
of a Helmholtz solver on a GPU which we present in this paper. There are two main issues: the first one is the efficient
implementation of the solver on GPU and the second one is the behavior of the numerical methods in single precision.
Nevertheless, even on a modern graphics card with double precision units (for example, Tesla 20 series or Fermi), single
precision calculations are still at least two times faster. The first issue can be resolved by knowing the insides of a GPU and
CUDA. The second issue can be addressed by using mixed precision algorithms; see e.g. [16].

The paper is organized as follows. In Section 2 we describe the Helmholtz equation and its discretization. Also the
components of the solver are described, including Krylov methods such as Bi-CGSTAB and IDR(s) and the shifted Laplace
multigrid method. The specific aspects of the GPU implementation for eachmethod are considered in detail in Section 3 and
optimizations for the GPU are suggested. In Section 4 two model problems are defined: with constant and variable wave
numbers. We solve those problems with Krylov methods preconditioned by the shifted Laplacian on a single CPU and a
single GPU and compare the performance. Finally Section 5 contains conclusions and an outlook of this paper.

2. Problem description

The two dimensional Helmholtz equation for a wave problem in a heterogeneous medium is considered

−
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− (1 − αi)k2(x, y)φ(x, y) = g(x, y), x, y ∈ Ω (1)

where φ(x, y) is the wave pressure field, k is the wavenumber, α is the damping coefficient, g(x, y) is the source term. The
corresponding differential operator has the following form:

A = −∆ − (1 − αi)k2,

where∆ denotes the Laplace operator. In this paperwe consider a rectangular domainΩ = [0, X]×[0, Y ]. There are several
boundary conditions:

• Dirichlet boundary conditions φ|∂Ω = 0,
• Non-reflecting boundary conditions

– First order radiation boundary condition (described in e.g. [17,18])
−

∂

∂η
− ik


φ = 0, (2)

where η is the outward unit normal component to the boundary. The disadvantage of this boundary condition is that
it is not accurate for inclined outgoing waves.

– Second order radiation boundary condition (described in [18])
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where xi is a coordinate parallel to the edge for Bφ|edge. The ± sign is determined such that for outgoing waves the
non-reflecting conditions are satisfied.

In many real world applications the physical domain is unbounded, and artificial reflections should be avoided. Therefore,
we consider here the first order radiation boundary condition (2).

2.1. Discretization

The domain Ω is discretized by an equidistant grid Ωh with the grid size h

Ωh := {(ih, jh) | i, j = 1, . . . ,N}.

For simplicity we set the same grid sizes in x- and y-directions. After discretization of Eq. (1) on Ωh using central finite
differences we get the following linear system of equations:

Aφ = g, A ∈ CN×N , φ, g ∈ CN . (5)
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